Physik Astronomie

Kaiserslauterer Physiker weisen für Magnon-Quantenteilchen Supraströme bei Raumtemperatur nach

Professor Dr. Burkhard Hillebrands, TU Kaiserslautern
Koziel/ TU Kaiserslautern

Das Verarbeiten von Daten schreitet rasant voran: Die Übertragung und die Speicherung müssen mit neuen Technologien mithalten und immer schneller werden – weltweit sind Forscher daher bemüht, neue Wege dafür zu finden.

„Makroskopische Quantenzustände können hierbei künftig eine Rolle spielen“, sagt Professor Hillebrands. „Bei diesen faszinierenden Phänomenen können die Gesetze der Quantenwelt auf größere Strukturen übertragen werden. Das Phänomen der Supraleitung und damit Supraströme sind das vielleicht bekannteste Beispiel.“

Um die Gesetzmäßigkeiten der Quantenwelt bei Supraströmen besser zu verstehen, setzten die Kaiserslauterer Forscher zusammen mit Kollegen aus der Ukraine und Israel in ihrer Arbeit auf sogenannte Bose-Einstein-Kondensate. Diese entstehen beispielsweise beim Abkühlen von Gasen bei ultratiefen Temperaturen.

„Sie entstehen sowohl aus realen Gasen als auch aus Gasen von Quasiteilchen, wie zum Beispiel Magnonen“, so der Physiker weiter, „wobei uns die Magnonen den Zugang zu bei Raumtemperatur ermöglichen, wo es sich viel leichter experimentieren lässt“.

Hillebrands und sein Team arbeiten daher intensiv mit diesen Teilchen, für die es seit Längerem einen eigenen Forschungsbereich gibt: die Magnonik.

„Magnonen sind die Quantenteilchen von Wellen in magnetischen Materialien, den Spinwellen. Diese sind analog zu Photonen, den Quantenteilchen von elektromagnetischen Wellen, wie zum Beispiel das Licht. Mit Magnonen kann man sehr gut Informationen transportieren, weil sie zum Beispiel leicht zu erzeugen, zu ändern und zu detektieren sind und sehr wenig Energie verbrauchen“, so der Physiker. Die Kaiserslauterer Forscher nutzen in ihren Arbeiten daher diese Teilchen als Informationsträger und -überträger.

Den Durchbruch erzielten die Kaiserslauterer nun durch die Erzeugung von Raumtemperatur-Supraströmen von Magnonen in einem Bose-Einstein-Kondensat. Dies eröffnet ein weites Anwendungsfeld, nicht nur in der Grundlagenforschung, sondern auch mit großer Relevanz für künftige Datentechnologien, etwa als Alternative für die derzeitigen Halbleiter-basierte Technologien. Das Verarbeiten und Speichern von Daten könnte so wesentlich leistungsfähiger werden.

Die Studie wurde in der renommierten Fachzeitschrift Nature Physics veröffentlicht: „Supercurrent in a room-temperature Bose–Einstein magnon condensate“, Dmytro A. Bozhko, Alexander A. Serga, Peter Clausen, Vitaliy I. Vasyuchka, Frank Heussner, Gennadii A. Melkov, Anna Pomyalov, Victor S. L’vov and Burkard Hillebrands, Nature Physics 2016, DOI: http://dx.doi.org/10.1038/nphys3838

Hintergrund: Die Forschungsergebnisse sind zentrale Vorarbeiten für den von Hillebrands kürzlich eingeworbenen ERC Advanced Grant „SuperMagnonics“ der Europäischen Union. Die am Fachbereich Physik der TU Kaiserslautern durchgeführten Arbeiten sind eingebettet in das Landesforschungszentrum OPTIMAS der Forschungsinitiative Rheinland-Pfalz. In dem Zentrum gehen Forscherinnen und Forscher den Wechselwirkungen von Licht, Magnetismus und Materie auf den Grund.

http://optimas.uni-kl.de/home/



Kommentare (0)

Schreiben Sie einen Kommentar