Forschende der Universität Hamburg und des DESY haben Hinweise auf das schwer fassbare Toponium gefunden. Mit dieser Entdeckung könnte die grundlegende Struktur aller Materie noch detaillierter entschlüsselt werden. Wissenschaftlerinnen und Wissenschaftler der Universität Hamburg (UHH) und des Elektronen-Synchrotrons DESY, die gemeinsam im Exzellenzcluster „Quantum Universe“ der UHH arbeiten, haben in zwei Experimenten am Teilchenbeschleuniger „Large Hadron Collider“ (LHC) des CERN Signale gefunden, die auf ein extrem seltenes Teilchen namens Toponium – einen gebundenen Zustand aus einem Top-Quark und seinem Antiteilchen…
Die Selbstorganisation ist ein grundlegendes Naturphänomen, das man sowohl in kleinen Skalen unter dem Mikroskop als auch in riesigen Dimensionen im Weltall beobachten kann. Es ist allgegenwärtig in unserem täglichen Leben und zeigt sich zum Beispiel eindrucksvoll bei Vogelschwärmen. Im Quantenbereich ist die Selbstorganisation noch weitgehend unerforscht. Forscherteams an der ETH Zürich und der Saar-Universität konnten nun die Mechanismen enthüllen, die zur Selbstorganisation eines Quantengases in Form eines Kristalls und zu seinem Zerfall führen. Ihr Forschungsergebnis wurde in dem renommierten…
Ende Juli geht es in Wacken hoch hinaus: Das Wacken Open Air bringt zahlreiche Akteure der deutschen Raumfahrt und Astronomie auf den Acker – inklusive Astronautinnen und Astronauten. Im Rahmen einer besonderen Kooperation erwartet die Besucherinnern und Besucher in diesem Jahr ein Space Camp mit einem spannenden und informativen Programm rund um das Thema Weltraum. Als Partner mit dabei sind die ArianeGroup, die Astronomische Gesellschaft (vertreten durch das Max-Planck-Institut für Radioastronomie, Bonn; das Haus der Astronomie, Heidelberg; das Institut für…
Mithilfe präziser optischer Spektroskopie ist es einem Forschungsteam der TU Darmstadt gelungen, den Ladungsradius des Isotops 13C – eines stabilen Kohlenstoffisotops – deutlich genauer zu bestimmen als bisher. Die Ergebnisse der Studie sind nun im renommierten Journal „Nature Communications“ erschienen. Die elektrische Kraft zwischen Elektronen und Atomkernen ermöglicht die Bestimmung des mittleren Radius der Ladungsverteilung eines Atomkerns. Dieser sogenannte Kernladungsradius ist die genaueste Größenangabe, die die Forschung für einen Atomkern erhalten kann. Die Kerngröße lässt sich aus der Winkelverteilung von…
Inklusive des neu hinzu gekommenen Kerns sind nun insgesamt 14 Isotope des künstlichen superschweren Elements Seaborgiums (Ordnungszahl 106) bekannt. Zur Herstellung von Seaborgium-257 diente ein intensiver Chrom-52-Strahl aus dem GSI/FAIR-Linearbeschleuniger UNILAC, der auf eine dünne Schicht aus Blei-206 prallte. Unter Nutzung des hocheffizienten Detektionssystems am gasgefüllten Rückstoßseparator TASCA (TransActinide Separator and Chemistry Apparatus) konnte das Forschungsteam 21 Zerfälle eines Seaborgium-257 Kerns durch Spontanspaltung sowie einen Alpha-Zerfall und somit 22 Kerne insgesamt nachweisen. Die Halbwertszeit des neuen Isotops beträgt 12,6 Millisekunden….
Der leistungsfähigste Stellarator der Welt erreicht einen Rekord bei einem Schlüsselparameter der Fusionsphysik: dem Tripelprodukt Auf dem Weg zu einem Fusionskraftwerk sind Anlagen vom Typ Stellarator eine der aussichtsreichsten Optionen. Künftig könnten sie nutzbare Energie gewinnen, indem sie leichte Atomkerne miteinander verschmelzen. Diese Reaktion soll in einem viele zehn Millionen Grad Celsius heißen Gas aus ionisierten Teilchen ablaufen – einem Plasma. Stellaratoren nutzen dabei das Prinzip des magnetischen Einschlusses: Das Plasma wird durch ein komplexes und sehr starkes Magnetfeld eingesperrt…
Ein internationales Team um den Innsbrucker Quantenphysiker Peter Zoller hat gemeinsam mit dem US-Unternehmen QuEra Computing eine Eichfeldtheorie ähnlich Modellen aus der Teilchenphysik erstmals in einem zweidimensionalen analogen Quantensimulator direkt beobachtet. Die Studie, veröffentlicht in der Fachzeitschrift Nature, eröffnet neue Möglichkeiten für die Erforschung grundlegender physikalischer Phänomene. „String Breaking“ tritt auf, wenn der „String“ zwischen zwei stark gebundenen Teilchen, wie etwa einem Quark-Antiquark-Paar, „reißt“ und neue Teilchen entstehen. Dieses Konzept ist zentral für das Verständnis der starken Wechselwirkungen, wie sie…
Messung des g-Faktors von lithiumhaltigem Zinn Quantenelektrodynamik – ein Wettbewerbsfeld für Präzision Quantenelektrodynamik (QED) ist die grundlegende Theorie, die alle elektromagnetischen Phänomene einschließlich des Lichts (Photonen) beschreibt. Zugleich ist sie die bestgetestete Theorie der Physik überhaupt. Auf verschiedene Weise wurde sie bis auf 0,1 zu einer Milliarde genau geprüft. Aber gerade die Stärke dieser Theorie treibt die Physiker an, sie noch strenger zu untersuchen und ihre möglichen Grenzen auszuloten. Jede signifikante Abweichung wäre ein Hinweis auf neue Physik. Die…
Studie in Nature liefert Einblicke in eindimensionale Anyonen. Im Gegensatz zu Fermionen und Bosonen, den beiden grundlegenden Teilchenarten in der Natur, weisen Anyonen einzigartige Quanteneigenschaften auf. Solche Teilchen sind selten zu beobachten, weil alle üblichen Elementarteilchen entweder Bosonen oder Fermionen sind. Anyonen, die nicht eigenständig existieren, sondern als Anregungen in Quantensystemen auftreten, wurden bisher nur in zweidimensionalen Systemen beobachtet. Ihr Nachweis in eindimensionalen Systemen blieb bis heute aus. In einer aktuellen Studie untersuchten Forscher:innen der Universität Innsbruck, der Université…
Neue Massstäbe in der Kernphysik Ein internationales Forschungsteam unter Leitung des Paul Scherrer Instituts PSI hat den Radius des Kerns von myonischem Helium-3 mit bislang unerreichter Präzision vermessen. Die Ergebnisse sind ein wichtiger Stresstest für Theorien und künftige Experimente in der Atomphysik. 1,97007 Femtometer (billiardstel Meter): So unvorstellbar winzig ist der Radius des Atomkerns von Helium-3. Zu diesem Ergebnis kommt ein Experiment am PSI, das nun im Fachmagazin Science veröffentlicht wurde. Mehr als 40 Forschende aus internationalen Instituten haben dafür…
Der Bahndrehimpuls des Elektrons galt lange eher als physikalische Nebensache, in den meisten Kristallen wird er ohnehin unterdrückt. Wissenschaftlerinnen und Wissenschaftler des Forschungszentrums Jülich haben nun entdeckt, dass er in bestimmten Materialien nicht nur erhalten bleibt, sondern sich sogar aktiv steuern lässt. Und zwar durch eine Eigenschaft der Kristallstruktur, die Chiralität oder auch Händigkeit genannt wird und auch sonst viele Prozesse in der Natur beeinflusst. Die Entdeckung hat das Potenzial für eine neue Klasse elektronischer Bauelemente, die Informationen besonders robust…
Wissenschaftler*innen haben Wasserstoff- und Deuterium-Moleküle in winzigen Räumen, sogenannten Picokavitäten, mithilfe fortschrittlicher Spektroskopie beobachtet. Diese Studie zeigt einzigartige Unterschiede zwischen den Molekülen aufgrund quantenmechanischer Effekte auf, was zukünftige Forschungen in den Bereichen Energiespeicherung und Quantentechnologien unterstützen könnte. Wichtige Aspekte – Erstmals wurde die spektroskopische Beobachtung von Wasserstoff- (H2) und Deuterium-Molekülen (D2) erreicht, die in einem atomaren Raum, bekannt als Picokavität, physikalisch adsorbiert sind.– Es wurde picometrische Rotations-/Vibrationsspektroskopie eingesetzt, um ihre Struktur und Dynamik auf Einzelmolekülebene zu erläutern.– Es wurden unterschiedliche…
Speziell für Messungen von Materie unter extremem Druck hat eine internationale Forschungskollaboration unter Leitung der Universität Rostock und des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) im Jahr 2023 erstmals den Hochleistungslaser DIPOLE 100-X am European XFEL eingesetzt. Spektakulär: Bereits in diesem ersten Experiment gelang die Untersuchung von flüssigem Kohlenstoff – ein bislang einzigartiger Vorgang, wie die Forscher*innen jetzt in der Fachzeitschrift Nature (DOI: 10.1038/s41586-025-09035-6) berichten. Flüssiger Kohlenstoff kommt zum Beispiel im Inneren von Planeten vor und spielt eine wichtige Rolle für Zukunftstechnologien wie…
Alexey Chernikov und sein Team sind auf den Nachweis optischer Quasiteilchen mit ultraschneller Mikroskopie spezialisiert. Jetzt konnten sie gemeinsam mit internationalen Wissenschaftler:innen ein neues Quantenphänomen sichtbar machen: Sie haben leuchtende Quasiteilchen – Exzitonen – auf der Oberfläche eines Halbleitermagneten gefunden. Bislang wusste man nur, dass sie innerhalb solcher Materialien entstehen können. Für ihre Entdeckung untersuchten die Forschenden die nur wenige Atomlagen dünnen Kristallschichten des antiferromagnetischen Quantenhalbleiters Chromium-Sulfid-Bromid (CrSBr). Die Ergebnisse wurden im Fachjournal Nature Materials veröffentlicht. Quasiteilchen in HalbleitermagnetenNur wenige…
Ein internationales Team von Wissenschaftler*innen hat einen unerwarteten Bereich schwerer, neutronenarmer Isotope in der Nuklidkarte identifiziert, in dem die Kernspaltung überwiegend durch einen asymmetrischen Modus bestimmt wird. Das Experiment wurde am GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt im Rahmen des FAIR-Phase-0-Programms durch die Forschungskollaboration R3B-SOFIA durchgeführt. Die Ergebnisse sind im Fachmagazin Nature veröffentlicht. Das Forschungsteam untersuchte die Spaltungseigenschaften von 100 verschiedenen neutronenarmen exotischen Isotopen, die von Iridium (Ordnungszahl Z = 77) bis Thorium (Z = 90) reichen. Diese Isotope mit…
Erzeugung und Vermessung des extrem neutronenreichen Wasserstoffisotops ⁶H gelingt erstmals an einem Elektronenstreuexperiment / Ergebnis weist auf unerwartet starke Wechselwirkung zwischen Neutronen innerhalb des Kerns hin Der A1-Kollaboration am Institut für Kernphysik der Johannes Gutenberg-Universität Mainz (JGU) ist es zusammen mit Wissenschaftlerinnen und Wissenschaftlern aus China und Japan erstmals gelungen, in einem Elektronenstreuexperiment eines der neutronenreichsten Wasserstoffisotope, Wasserstoff-6, zu erzeugen. Das Experiment an der Spektrometeranlage am Teilchenbeschleuniger Mainzer Mikrotron (MAMI) präsentiert eine neue Methode zur Untersuchung leichter neutronenreicher Kerne…