Geowissenschaften

Erdinneres kühlt schneller ab als erwartet

Der Erdkern gibt Wärme an den Erdmantel (orange bis dunkelrot) ab, was zur langsamen Auskühlung der Erde beiträgt. (Bild: iStock / Rost-​9D)

ETH-​Forschende zei­gen im La­bor, wie gut ein häu­fi­ges Mi­ne­ral an der Gren­ze zwi­schen Erdkern-​ und Man­tel Wär­me lei­tet. Das lässt sie ver­mu­ten, dass die Er­de frü­her er­kal­ten könn­te als bis­her an­ge­nom­men.

Die Ent­wick­lung un­se­rer Er­de ist die Ge­schich­te ih­rer Ab­küh­lung: Vor 4,5 Mil­li­ar­den Jah­ren herrsch­ten auf der Ober­flä­che der jun­gen Er­de ex­tre­me Tem­pe­ra­tu­ren, und sie war von ei­nem tie­fen Mag­ma­oze­an be­deckt. Doch im Lauf der Jahr­mil­lio­nen kühl­te der Pla­net ober­fläch­lich ab, und es bil­de­te sich ei­ne sprö­de Krus­te. Die ge­wal­ti­ge, aus dem Erd­in­nern frei­ge­setz­te Wär­me­en­er­gie setz­te je­doch dy­na­mi­sche Pro­zes­se in Gang, wie et­wa die Man­tel­kon­vek­ti­on, die Plat­ten­tek­to­nik oder Vul­ka­nis­mus.

Noch of­fen sind aber die Fra­gen, wie schnell sich die Er­de ab­ge­kühlt hat und wie lan­ge es dau­ern könn­te, bis die er­wähn­ten wär­me­ge­trie­be­nen Pro­zes­se auf­grund der fort­schrei­ten­den Ab­küh­lung zum Still­stand kom­men.

Ei­ne Ant­wort dar­über lie­fert mög­li­cher­wei­se die Wär­me­leit­fä­hig­keit der Mi­ne­ra­li­en, die die Gren­ze zwi­schen dem Erd­kern und dem Erd­man­tel bil­den.

Die­se Grenz­schicht ist des­halb re­le­vant, weil hier das zäh­flüs­si­ge Man­tel­ge­stein in di­rek­ten Kon­takt mit der heis­sen Eisen-​Nickel-Schmelze des äus­se­ren Erd­kerns steht. Der Tem­pe­ra­tur­gra­di­ent zwi­schen den bei­den Schich­ten ist sehr gross, so dass hier al­so po­ten­zi­ell viel Wär­me fliesst. Ge­bil­det wird die Grenz­schicht zur Haupt­sa­che aus dem Mi­ne­ral Bridgma­nit. Wie viel Wär­me die­ses Mi­ne­ral vom Erd­kern in den Man­tel lei­tet, kön­nen For­schen­de je­doch schlecht ein­schät­zen, da die ex­pe­ri­men­tel­le Über­prü­fung sehr schwie­rig ist.

ETH-​Professor Mo­to­hi­ro Mu­ra­ka­mi und Kol­le­gen der Car­ne­gie In­sti­tu­ti­on for Sci­ence ha­ben des­halb ein aus­ge­klü­gel­tes Mess­sys­tem ent­wi­ckelt, das es er­mög­licht, die Wär­me­leit­fä­hig­keit von Bridgma­nit im La­bor zu mes­sen, und zwar un­ter den Druck-​ und Tem­pe­ra­tur­be­din­gun­gen, wie sie im In­nern der Er­de herr­schen. Für die Mes­sun­gen ver­wen­de­ten sie ein kürz­lich ent­wi­ckel­tes op­ti­sches Ab­sorp­ti­ons­mess­sys­tem in ei­ner mit ei­nem ge­puls­ten La­ser be­heiz­ten Dia­mant­ein­heit.

Messgerät zur Bestimmung der Wärmeleitfähigkeit von Bridgmanit unter hohem Druck und extremer Temperatur. (aus Murakami M, et al, 2021)

«Mit die­sem Mess­sys­tem konn­ten wir zei­gen, dass die Wär­me­leit­fä­hig­keit von Bridgma­nit et­wa ein­ein­halb­mal hö­her ist als an­ge­nom­men», sagt Mu­ra­ka­mi. Dies las­se den Schluss zu, dass auch der Wär­me­fluss vom Kern in den Man­tel hö­her sei als bis­her ge­dacht. Ein stär­ke­rer Wär­me­fluss wie­der­um ver­stärkt die Man­tel­kon­vek­ti­on und be­schleu­nigt die Ab­küh­lung der Er­de. Dies kann da­zu füh­ren, dass die Plat­ten­tek­to­nik, die durch die Kon­vek­ti­ons­be­we­gun­gen des Man­tels in Gang ge­hal­ten wird, schnel­ler er­lahmt als For­schen­de auf­grund der bis­he­ri­gen Wär­me­lei­tungs­wer­te er­war­tet ha­ben.

Mu­ra­ka­mi und sei­ne Kol­le­gen zei­gen zu­dem auf, dass ei­ne schnel­le Ab­küh­lung des Man­tels die sta­bi­len Mi­neral­pha­sen an der Kern-​Mantel-Grenze ver­än­dern wird. Beim Ab­küh­len geht Bridgma­nit in das Mi­ne­ral Post-​Perowskit über. Doch so­bald Post-​Perowskit an der Kern-​Mantel-Grenze auf­taucht und zu do­mi­nie­ren be­ginnt, könn­te sich die Aus­küh­lung des Man­tels so­gar wei­ter be­schleu­ni­gen, schät­zen die For­schen­den, lei­tet die­ses Mi­ne­ral Wär­me noch ef­fi­zi­en­ter als Bridgma­nit.

«Un­se­re Er­geb­nis­se könn­ten uns ei­ne neue Per­spek­ti­ve auf die Ent­wick­lung der Dy­na­mik der Er­de er­öff­nen. Sie deu­ten dar­auf hin, dass die Er­de wie die an­de­ren Ge­steins­pla­ne­ten Mer­kur und Mars viel schnel­ler als er­war­tet aus­kühlt und in­ak­tiv wird», er­klärt Mu­ra­ka­mi.

Wie lan­ge es dau­ert, bis bei­spiels­wei­se die Kon­vek­ti­ons­strö­me im Man­tel zum Still­stand kom­men wer­den, kann der For­scher al­ler­dings nicht sa­gen. «Sol­che Er­eig­nis­se zeit­lich ein­zu­gren­zen, ist mit dem ak­tu­el­len Stand des Wis­sens nicht mög­lich.» Da­zu müs­se man zu­nächst bes­ser ver­ste­hen, wie die Man­tel­kon­vek­ti­on räum­lich und zeit­lich funk­tio­niert. Wei­ter müs­sen die Wis­sen­schaft­ler klä­ren, wie sich der Zer­fall ra­dio­ak­ti­ver Ele­men­te im Erd­in­nern, ei­ne der wich­tigs­ten Wär­me­quel­len, auf die Dy­na­mik des Man­tels aus­wirkt.

Li­te­ra­tur­hin­weis

Mu­ra­ka­mi M, Gon­cha­rov A, Mi­ya­ji­ma N, Yama­za­ki D, Holt­gre­we N.: Ra­dia­ti­ve ther­mal con­duc­ti­vi­ty of single-​crystal bridgma­ni­te at the core-​mantle bounda­ry with im­pli­ca­ti­ons for ther­mal evo­lu­ti­on of the Earth. Earth and Pla­ne­ta­ry Sci­ence Let­ters, Vo­lu­me 578, 15 Ja­nuary 2022, 117329. doi: 10.1016/j.epsl.2021.117329

https://ethz.ch/de/news-und-veranstaltungen/eth-news/news/2022/01/erdinneres-kuehlt-schneller-ab-als-erwartet.html

Kommentare (0)

Schreiben Sie einen Kommentar