Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Technik aus Erlangen erforscht die Atmosphäre

06.03.2019

Normally, the optical systems studied in the TDSU 2 laboratory at the Max Planck Institute for the Science of Light (MPL) in Erlangen don’t leave the vibration-isolated and vibration-damped optical tables. On December 22nd of 2018, shortly after midnight Central European Time, a “Long March 11” rocket was launched from China’s Jiuquan spaceport to send a satellite into low Earth orbit in order to test a new communications system for global, seamless Internet connectivity. Also on board the satellite was a German remote sensing device, which was developed by researchers of the MPL in cooperation with atmospheric physicists of the University of Wuppertal and Research Center Jülich: AtmoSHINE.

Normalerweise verlassen die optischen Systeme, die in den Labors der TDSU 2 am Max-Planck-Institut für die Physik des Lichts (MPL) in Erlangen erforscht werden, nicht die schwingungsisolierten und vibrationsgedämpften optischen Tische. Dieses Mal jedoch ist alles anders.


Das Gerät AtmoSHINE

MPL / Klaus Mantel

Am 22. Dezember 2018, kurz nach Mitternacht mitteleuropäischer Zeit, startete eine Rakete vom Typ „Langer Marsch 11“ vom chinesischen Weltraumbahnhof Jiuquan, um einen Satelliten zum Test eines neuen Kommunikationssystems für eine weltweite, lückenlose Internetversorgung in eine erdnahe Umlaufbahn zu befördern.

Mit an Bord des Satelliten ist auch ein deutsches Fernerkundungsgerät, das von Erlanger Forschern des MPL in Zusammenarbeit mit Atmosphärenphysikern der Bergischen Universität (BU) Wuppertal und des Forschungszentrums (FZ) Jülich in mehrjähriger Zusammenarbeit entwickelt wurde: AtmoSHINE.

„AtmoSHINE ist ein Spektrometer, mit dessen Hilfe hochaufgelöste Temperaturverteilungen der Atmosphäre in einem Höhenbereich um etwa 90km gemessen werden sollen“, erläutert Klaus Mantel von der TDSU 2 des MPL. Die Temperaturverteilung ist ein wichtiger Indikator für die vielfältigen dynamischen Prozesse, die in der Atmosphäre der Erde ablaufen.

Die Satellitenmission dient dabei als sog. In-Orbit-Verifikation, die ein planmäßiges Funktionieren des Geräts unter den schwierigen Bedingungen des Weltraums testen soll. Mit der globalen Vermessung der Temperaturverteilung von Satelliten aus sollen insbesondere sog. Schwerewellen besser charakterisiert werden, die zunehmend in den Fokus der Aufmerksamkeit geraten sind, da sie einen maßgeblichen Einfluss auf die Klimamodellierung ausüben. „Ein tieferes Verständnis der Schwerewellen würde eine Verbesserung und Weiterentwicklung der Klimamodelle erlauben“, erklärt Martin Kaufmann vom FZ Jülich.

Das Spektrometer, ein sog. „Spatiales Heterodyn-Interferometer“, soll die Emissionslinien der molekularen O2-A-Bande bei einer Wellenlänge von etwa 762nm vermessen. Aus den Intensitätsverhältnissen der einzelnen Spektrallinien lässt sich dann die aktuell in der Atmosphäre vorhandene Temperatur ermitteln.

„Dass ein solch leistungsfähiges Gerät entstehen konnte“, erläutert Klaus Mantel, „ist der hervorragenden Zusammenarbeit der verschiedenen Institute zu verdanken, die ihre jeweiligen Stärken eingebracht haben“. Der Fokus am MPL lag dabei auf den technisch-optischen Aspekten des Projekts. Die verwendeten Optiken müssen hohen Ansprüchen genügen, die auch von messtechnischer Seite aus sichergestellt werden müssen. Außerdem galt es, Justier- und Kalibrierstrategien für das System zu entwickeln.

Das Konzept war bereits im März 2017 im Rahmen des sog. REXUS-Projekts unter weltraumnahen Bedingungen getestet werden, wobei die dabei verwendete Höhenforschungsrakete nur Daten im Zeitraum von wenigen Minuten liefern konnte. Der chinesische Technologiesatellit hingegen befindet sich für mindestens 1 Jahr im Einsatz, und folgt dabei der Tag-Nacht-Grenze in einer sonnensynchronen Umlaufbahn in einer Höhe von 1100km.

Ein Nachfolgegerät für einen deutlich erweiterten Höhenbereich von 60-120km ist ebenfalls bereits in der Entwicklung. „Vorstellbar ist auch“, sagt Friedhelm Olschewski von der BU Wuppertal, „einen Schwarm von Kleinsatelliten, sog. CubeSats, mit Spatialen Heterodyn-Interferometern zu bestücken, um so tomographische, dreidimensional aufgelöste Temperaturfelder der oberen Atmosphäre zu erhalten“. Mit Hilfe dieser Messungen würden die Forscher über einzigartiges Datenmaterial höchster Qualität verfügen. So könnten die optischen Systeme aus den Erlanger Labors auch in Zukunft dabei helfen, das Verständnis der Atmosphäre um einen entscheidenden Schritt voranzubringen.

Wissenschaftliche Ansprechpartner:

Max-Planck-Institut für die Physik des Lichts
Klaus Mantel
Email: Klaus.Mantel@mpl.mpg.de

Originalpublikation:

https://doi.org/10.1029/97JD02794

Weitere Informationen:

https://mpl.mpg.de/research-at-mpl/technology-development-service-units/tdsu-2-o...

Patricia Staudacher-Sauer | Max-Planck-Institut für die Physik des Lichts

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Hohlraum vermittelt starke Wechselwirkung zwischen Licht und Materie
22.10.2019 | Universität Basel

nachricht Kompakt, effizient, robust und zuverlässig: FBH-Entwicklungen für den Weltraum
21.10.2019 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hohlraum vermittelt starke Wechselwirkung zwischen Licht und Materie

Forschern ist es gelungen, mithilfe eines mikroskopischen Hohlraumes eine effiziente quantenmechanische Licht-Materie-Schnittstelle zu schaffen. Darin wird ein einzelnes Photon bis zu zehn Mal von einem künstlichen Atom ausgesandt und wieder absorbiert. Das eröffnet neue Perspektiven für die Quantentechnologie, berichten Physiker der Universität Basel und der Ruhr-Universität Bochum in der Zeitschrift «Nature».

Die Quantenphysik beschreibt Photonen als Lichtteilchen. Will man ein einzelnes Photon mit einem einzelnen Atom interagieren lassen, stellt dies aufgrund der...

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Freiburger Forschenden gelingt die erste Synthese eines kationischen Tetraederclusters in Lösung

Hauptgruppenatome kommen oft in kleinen Clustern vor, die neutral, negativ oder positiv geladen sein können. Das bekannteste neutrale sogenannte Tetraedercluster ist der weiße Phosphor (P4), aber darüber hinaus sind weitere Tetraeder als Substanz isolierbar. Es handelt sich um Moleküle aus vier Atomen, deren räumliche Anordnung einem Tetraeder aus gleichseitigen Dreiecken entspricht. Bisher waren neben mindestens sechs neutralen Versionen wie As4 oder AsP3 eine Vielzahl von negativ geladenen Tetraedern wie In2Sb22– bekannt, jedoch keine kationischen, also positiv geladenen Varianten.

Ein Team um Prof. Dr. Ingo Krossing vom Institut für Anorganische und Analytische Chemie der Universität Freiburg ist es gelungen, diese positiv geladenen...

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitales-Krankenhaus – wo bleibt der Mensch?

21.10.2019 | Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Forscher der Universität Münster gewinnen neue Einblicke in die Evolution von Proteinen

22.10.2019 | Biowissenschaften Chemie

Die nackte Wahrheit: Wenn ein Mikroorganismus seine Hüllen fallen lässt

22.10.2019 | Biowissenschaften Chemie

Es war wirklich der Asteroid

22.10.2019 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics