Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ruckartige Bewegung schärft Röntgenpulse

28.07.2017

Spektral breite Röntgenpulse lassen sich rein mechanisch „zuspitzen“. Das klingt überraschend, aber ein Team aus theoretischen und Experimentalphysikern hat dafür eine Methode entwickelt und realisiert. Sie verwendet präzise mit den Pulsen synchronisierte schnelle Bewegungen einer mit dem Röntgenlicht wechselwirkenden Probe. Dadurch gelingt es, Photonen innerhalb des Röntgenpulses so zu verschieben, dass sich diese im gewünschten Bereich konzentrieren.

Wie macht man aus einem flachen Hügel einen steilen und hohen Berg? Man gräbt an den Seiten Material ab und schüttet es oben auf. So etwa kann man sich die Methode vorstellen, die ein Team vom MPI für Kernphysik in Heidelberg (MPIK) ersonnen hat, um die spektral breiten Röntgenpulse moderner Röntgenlichtquellen in einem schmalen Bereich zu verstärken.


Vor der Bewegung (oben) löscht das von der Probe gestreute Licht (blau) die Anregung (rot) aus. Nach der Bewegung (unten) ist das gestreute Licht verschoben und die Wellen verstärken sich (magenta).

MPI für Kernphysik

Röntgenpulse, deren Intensität sich auf einen schmalen Wellenlängenbereich konzentriert, sind für eine Reihe von grundlegenden physikalischen Experimenten erwünscht oder machen Präzisionsexperimente überhaupt erst möglich. Aber moderne Röntgenlichtquellen liefern für derartige Anwendungen zu breite Pulse, so dass fast alle Photonen ohne Wechselwirkung an der Probe „vorbeirauschen“.

Tatsächlich benutzen die Physiker so etwas wie einen Bagger für Lichtpulse, nämlich Piezoelemente, die mittels elektrischer Impulse präzise Bewegungen ausführen können. Als „Schaufel“ dient dabei eine dünne Folie aus Eisen. Synchronisiert man die Bewegung dieser „Photonenschaufel“ mit dem zeitlichen Eintreffen der Röntgenpulse, so kann man tatsächlich Röntgenphotonen auf einen „Haufen“, also in einen schmalen Wellenlängenbereich, schaufeln.

„Zusammen mit einem Team aus der Abteilung von Thomas Pfeifer am MPIK, dem Deutschen Elektronen-Synchrotron (DESY) in Hamburg und der European Synchrotron Radiation Facility (ESRF) in Grenoble konnten wir zeigen, dass die Methode funktioniert. Das Spektrum von Röntgenpulsen ließ sich tatsächlich rein mechanisch manipulieren“, freut sich Jörg Evers aus der Abteilung von Christoph Keitel am MPIK und betont die Vorteile: „Dabei werden keine Photonen ‚verschwendet‘ wie in einem Monochromator, der nur die unerwünschten Wellenlängen abschneidet. Auch müssen wir keine zusätzliche Energie in den Röntgenpuls hineinstecken.“

Durchgeführt haben die Physiker ihre Experimente mit Röntgenpulsen der Synchrotrone ESRF und PETRA III (DESY). Dass die piezoelektrische Photonenschaufel so gut funktioniert, beruht auf dem Mössbauer-Effekt. Die Eisenfolie ist mit dem Isotop 57Fe angereichert. Im Festkörper kann dieses „Mössbauer-Isotop“ Photonen rückstoßfrei absorbieren und emittieren. Dadurch absorbiert die Eisenfolie einen extrem schmalen Ausschnitt aus dem relativ breiten Röntgenpuls und emittiert dieses Licht mit einer gewissen Zeitverzögerung „resonant“ wieder.

Die Wellen des durchgehenden und des wieder abgestrahlten Lichts überlagern sich wie die Wellen von zwei Steinen, die man nebeneinander ins Wasser geworfen hat. Wird nun die Folie in der Zeit zwischen Absorption und Emission ein Stückchen bewegt, ist das so, als ob einer der beiden Steine ein Stückchen weiter geflogen wäre. An einem festen Punkt beobachtet, erscheint dann im einen Fall vielleicht ein Wellental, im anderen Fall aber ein Wellenberg.

Mit Hilfe des Piezoelements gelang es den Physikern, die Eisenfolie so zu bewegen, dass diese Interferenzeffekte die resonanten Wellenlängen auf Kosten der „äußeren“ Wellenlängen verstärken. „Diese Bewegung um eine halbe Wellenlänge muss auf weniger als einen zehntel Nanometer genau gesteuert werden und innerhalb von einigen Nanosekunden erfolgen“, verdeutlicht Erstautor Kilian Heeg, PostDoc in der Gruppe von Jörg Evers, die Anforderungen.

In Zukunft könnte die neue Methode für den Einsatz im normalen Nutzerbetrieb an Röntgenlichtquellen wie Synchrotronen oder Freie-Elektronen-Lasern weiterentwickelt werden. Die erhöhte Intensität bewirkt eine deutliche Verkürzung von Messzeiten und ermöglicht Messungen mit bisher zu geringer Signalrate. Außerdem sorgen die stärkeren Signale für eine erhöhte räumliche, zeitliche oder spektrale Auflösung. Umgekehrt herum sollten sich mit dieser Technik Bewegungen auf atomarer Skala verfolgen lassen.


Originalveröffentlichung:
Spectral narrowing of x-ray pulses for precision spectroscopy with nuclear resonances K. P. Heeg, A. Kaldun, C. Strohm, P. Reiser, C. Ott, R. Subramanian, D. Lentrodt, J. Haber, H.-C. Wille, S. Goerttler, R. Rüffer, C. H. Keitel, R. Röhlsberger, T. Pfeifer, J. Evers
Science 357, 375-378 (2017) doi: 10.1126/science.aan3512 http://science.sciencemag.org/content/357/6349/375

Kontakt:
PD Dr. Jörg Evers
Abteilung Keitel, MPI für Kernphysik
Tel.: +49 6221-516-177
E-Mail: joerg.evers(at)mpi-hd.mpg.de

Prof. Dr. Thomas Pfeifer
MPI für Kernphysik
Tel.: +49 6221-516-380
E-Mail: thomas.pfeifer(at)mpi-hd.mpg.de

Prof. Dr. Ralf Röhlsberger
Deutsches Elektronen-Synchrotron DESY
Tel: +49 40 8998 4503
email: ralf.roehlsberger(at)desy.de

Weitere Informationen:

https://www.mpi-hd.mpg.de/keitel/evers/ - Gruppe Evers (Abteilung Keitel)
https://www.mpi-hd.mpg.de/mpi/de/pfeifer/pfeifer-division-home/ - Abteilung Pfeifer
http://photon-science.desy.de/research/research_teams/magnetism_and_coherent_phe... - Gruppe Röhlsberger (DESY)

Dr. Gertrud Hönes | Max-Planck-Institut für Kernphysik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantenverschränkung erstmals mit Licht von Quasaren bestätigt
20.08.2018 | Österreichische Akademie der Wissenschaften

nachricht Unser Gehirn behält das Unerwartete im Blick
17.08.2018 | Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Mischung macht‘s: Jülicher Forscher entwickeln schnellladefähige Festkörperbatterie

Mit Festkörperbatterien sind aktuell große Hoffnungen verbunden. Sie enthalten keine flüssigen Teile, die auslaufen oder in Brand geraten könnten. Aus diesem Grund sind sie unempfindlich gegenüber Hitze und gelten als noch deutlich sicherer, zuverlässiger und langlebiger als herkömmliche Lithium-Ionen-Batterien. Jülicher Wissenschaftler haben nun ein neues Konzept vorgestellt, das zehnmal größere Ströme beim Laden und Entladen erlaubt als in der Fachliteratur bislang beschrieben. Die Verbesserung erzielten sie durch eine „clevere“ Materialwahl. Alle Komponenten wurden aus Phosphatverbindungen gefertigt, die chemisch und mechanisch sehr gut zusammenpassen.

Die geringe Stromstärke gilt als einer der Knackpunkte bei der Entwicklung von Festkörperbatterien. Sie führt dazu, dass die Batterien relativ viel Zeit zum...

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Quantenverschränkung erstmals mit Licht von Quasaren bestätigt

20.08.2018 | Physik Astronomie

1,6 Millionen Euro für den Aufbau einer Forschungsgruppe zu Quantentechnologien

20.08.2018 | Förderungen Preise

IHP-Technologie darf in den Weltraum fliegen

20.08.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics