Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Künstliche Intelligenz erkennt Quantenphasenübergänge

08.07.2019

Forscher der Universität Hamburg haben Methoden des maschinellen Lernens genutzt, um die Identifikation von Quantenphasenübergängen aus experimentellen Daten zu verbessern. Dazu trainierten sie ein künstliches neuronales Netzwerk darauf, experimentelle Bilder einer der möglichen Quantenphasen zuzuordnen. Ihre Ergebnisse präsentieren sie im Fachmagazin „Nature Physics“.

Die Einsatzgebiete von Künstlicher Intelligenz (KI) und „Maschinellem Lernen“ reichen vom autonomen Fahren über vollständig automatisierte Industrieprozesse bis zum Haushalt („intelligenter Kühlschrank“).


Foto: UHH/AG Sengstock

Für die Datenanalyse nutzen die Wissenschaftler ein neuronales Netzwerk aus vielen Lagen und Filtern, das sie mit experimentellen Bildern von ultrakalten Atomen wie diesen speisten.

Aber auch in der Wissenschaft werden diese Methoden intensiv eingesetzt und erforscht, etwa in der Teilchenphysik, wo zum Beispiel KI-Netzwerke aus Milliarden von Datensätzen die relevanten Informationen vorsortieren.

Nun ist es Hamburger Forschern erstmals gelungen, KI in der Quantenphysik einzusetzen, um aus experimentellen Daten sogenannte Quantenphasenübergänge zu erkennen, also die Punkte, an denen sich Eigenschaften von Stoffen verändern.

Dies ist besonders interessant, da die Vermessung mit gewöhnlichen Auswertungsmethoden weitaus langwieriger ist. Die Forscher betonen daher, dass dieses Ergebnis weitreichende Konsequenzen für den Forschungsalltag haben kann.

Künstliche Intelligenz könne im Labor in Echtzeit ganz neue Effekte der Quantenphysik analysieren, die sonst nicht zugänglich sind.

Das Team um Prof. Klaus Sengstock und Dr. Christof Weitenberg vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ und dem Sonderforschungsbereich „Lichtinduzierte Kontrolle und Dynamik korrelierter Quantensysteme“ trainierte die KI anhand von Experimenten mit sogenannten ultrakalten Quantengasen, die nahe an den absoluten Temperaturnullpunkt von rund -273 Grad Celsius heruntergekühlt waren.

Bei ihren Experimenten fangen die Forscher ultrakalte Atome in einem Gitter aus Laserlicht und simulieren damit die Physik der Elektronen in einem Festkörper.

Wenn man die Parameter der Gitter ändert, ordnen sich die Atome unterschiedlich an und die Gase bekommen verschiedene Eigenschaften. Während ein Gas in einer Phase zum Beispiel Teilchen ohne Reibung leitet, isoliert es in einer anderen Phase.

Die Forscher interessieren sich für die Übergänge zwischen diesen Phasen, die sich jeweils durch die gemessene Impulsverteilung unterscheiden. Das Team trainierte das neuronale Netzwerk darauf, im Experiment gewonnene Bilder dieser Impulsverteilung der jeweils richtigen Phase zuzuordnen und damit die Phasenübergänge zu lokalisieren.

Weitenberg erläutert: „Zuvor hatten andere Wissenschaftler diesen Ansatz für numerisch generierte Bilder demonstriert. Dass er auch mit experimentellen Daten funktioniert, ist ein vielversprechendes Ergebnis.“

Niklas Käming, der als Masterstudent wesentliche Beiträge zur Datenanalyse geleistet hat, ergänzt: „Die Anwendung von Maschine-Learning-Techniken auf Quantengas-Experimente eröffnet viele spannende Möglichkeiten. Als nächstes wollen wir die Methode auf sogenanntes unüberwachtes maschinelles Lernen erweitern, bei dem die Bilder für das Training des Netzwerks keine vorab festgelegte Zuordnung zu einer der Quantenphasen haben müssen.“

Wissenschaftliche Ansprechpartner:

Dr. Christof Weitenberg
Universität Hamburg
Institut für Laserphysik
Tel: +49 40 8998-5204
E-Mail: cweitenb@physnet.uni-hamburg.de

Prof. Dr. Klaus Sengstock
Universität Hamburg
Institut für Laserphysik
Tel: +49 40 8998-5201
E-Mail: ksengsto@physnet.uni-hamburg.de

Originalpublikation:

Benno S. Rem, Niklas Käming, Matthias Tarnowski, Luca Asteria, Nick Fläschner, Christoph Becker, Klaus Sengstock, Christof Weitenberg: Identifying Quantum Phase Transitions using Artificial Neural Networks on Experimental Data, Nature Physics. DOI: https://doi.org/10.1038/s41567-019-0554-0

Weitere Informationen:

https://www.uni-hamburg.de/newsroom/presse/2019/pm48.html

Birgit Kruse | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Bessere Wärmeleitfähigkeit durch geänderte Atomanordnung
19.07.2019 | Universität Basel

nachricht Chemie des kosmologischen Dunklen Zeitalters im Labor untersucht
19.07.2019 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bessere Wärmeleitfähigkeit durch geänderte Atomanordnung

Die Anpassung der Wärmeleitfähigkeit von Materialien ist eine aktuelle Herausforderung in den Nanowissenschaften. Forschende der Universität Basel haben mit Kolleginnen und Kollegen aus den Niederlanden und Spanien gezeigt, dass sich allein durch die Anordnung von Atomen in Nanodrähten atomare Vibrationen steuern lassen, welche die Wärmeleitfähigkeit bestimmen. Die Wissenschaftler veröffentlichten die Ergebnisse kürzlich im Fachblatt «Nano Letters».

In der Elektronik- und Computerindustrie werden die Komponenten immer kleiner und leistungsfähiger. Problematisch ist dabei die Wärmeentwicklung, die durch...

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: Nanopartikel mit neuartigen elektronischen Eigenschaften

Forscher der FAU haben Konzept zur Steuerung von Nanopartikeln entwickelt

Die optischen und elektronischen Eigenschaften von Aluminiumoxid-Nanopartikeln, die eigentlich elektronisch inert und optisch inaktiv sind, können gesteuert...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Neues Verfahren für den Kampf gegen Viren

Forschende der Fraunhofer-Gesellschaft in Sulzbach und Regensburg arbeiten im Projekt ViroSens gemeinsam mit Industriepartnern an einem neuartigen Analyseverfahren, um die Wirksamkeitsprüfung von Impfstoffen effizienter und kostengünstiger zu machen. Die Methode kombiniert elektrochemische Sensorik und Biotechnologie und ermöglicht erstmals eine komplett automatisierte Analyse des Infektionszustands von Testzellen.

Die Meisten sehen Impfungen als einen Segen der modernen Medizin, da sie vor gefährlichen Viruserkrankungen schützen. Doch bevor es ein Impfstoff in die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Testzone für die KI-gestützte Produktion

18.07.2019 | Veranstaltungen

„World Brain Day“ zum Thema Migräne: individualisierte Therapie statt Schmerzmittelübergebrauch

18.07.2019 | Veranstaltungen

Kosmos-Konferenz: Navigating the Sustainability Transformation in the 21st Century

17.07.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vielfältiger einsetzbare Materialien

19.07.2019 | Biowissenschaften Chemie

Regulation des Wurzelwachstums aus der Ferne

19.07.2019 | Biowissenschaften Chemie

Bessere Wärmeleitfähigkeit durch geänderte Atomanordnung

19.07.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics