Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hohlraum vermittelt starke Wechselwirkung zwischen Licht und Materie

22.10.2019

Forschern ist es gelungen, mithilfe eines mikroskopischen Hohlraumes eine effiziente quantenmechanische Licht-Materie-Schnittstelle zu schaffen. Darin wird ein einzelnes Photon bis zu zehn Mal von einem künstlichen Atom ausgesandt und wieder absorbiert. Das eröffnet neue Perspektiven für die Quantentechnologie, berichten Physiker der Universität Basel und der Ruhr-Universität Bochum in der Zeitschrift «Nature».

Die Quantenphysik beschreibt Photonen als Lichtteilchen. Will man ein einzelnes Photon mit einem einzelnen Atom interagieren lassen, stellt dies aufgrund der winzigen Grösse des Atoms eine grosse Herausforderung dar.


Ein mikroskopischer Hohlraum aus zwei hochreflektierenden Spiegeln wird verwendet, um ein eingeschlossenes künstliches Atom (sog. Quantenpunkt) mit einem einzelnen Photon wechselwirken zu lassen.

Bild: Universität Basel, Departement Physik

Schickt man das Photon jedoch mehrmals mittels Spiegeln am Atom vorbei, erhöht sich die Wahrscheinlichkeit einer Wechselwirkung wesentlich.

Um Photonen zu erzeugen, verwenden die Forscher künstliche Atome, sogenannte Quantenpunkte. Diese Halbleiterstrukturen bestehen aus einer Ansammlung von zehntausenden von Atomen, verhalten sich aber ähnlich wie ein einzelnes Atom: Werden sie optisch angeregt, ändert sich ihr Energiezustand und sie emittieren ein Photon.

«Sie haben jedoch den technologischen Vorteil, dass man sie in einem Halbleiterchip einbetten kann», so Dr. Daniel Najer, der das Experiment am Departement Physik der Universität Basel durchgeführt hat.

System aus Quantenpunkt und Mikrohohlraum

Normalerweise fliegen diese Lichtteilchen wie bei einer Glühbirne in alle Richtungen davon. Für ihr Experiment haben die Forscher den Quantenpunkt aber in einem Hohlraum mit spiegelnden Wänden eingeschlossen. Diese gekrümmten Spiegel werfen das emittierte Photon bis zu 10'000 Mal hin und her, wodurch eine Wechselwirkung von Licht und Materie einsetzt.

Messungen zeigen, dass ein einzelnes Photon bis zu zehn Mal vom Quantenpunkt emittiert und wieder absorbiert wird. Auf der Quantenebene verwandelt sich das Photon also in einen höherenergetischen Zustand des künstlichen Atoms, worauf wieder ein neues Photon ausgesandt wird. Und zwar sehr schnell, was im Hinblick auf quantentechnologische Anwendungen sehr erwünscht ist: Ein Zyklus dauert nur 200 Picosekunden.

Der Übergang eines Energiequants von einem Quantenpunkt in ein Photon und wieder zurück sei theoretisch gut abgestützt, doch «hat zuvor noch niemand diese Oszillationen so klar beobachtet», sagt Prof. Dr. Richard J. Warburton vom Departement Physik der Universität Basel.

Serielle Wechselwirkung von Licht und Materie

Bedeutend ist das erfolgreiche Experiment vor allem deswegen, weil in der Natur keine direkten Photon-Photon-Wechselwirkungen vorkommen. Eine kontrollierte Wechselwirkung ist aber für eine Anwendung in der Quanteninformationsverarbeitung erforderlich.

Durch die Umwandlung von Licht in Materie nach den Gesetzen der Quantenphysik wird die Wechselwirkung zwischen einzelnen Photonen indirekt möglich – nämlich über den Umweg einer Verschränkung zwischen einem Photon und einem einzelnen Elektronenspin, der im Quantenpunkt gefangen ist.

Nimmt man mehrere solche Photonen, lassen sich Quantengatter aus verschränkten Photonen realisieren. Das ist für die Erzeugung von photonischen Qubits, welche Information mittels des Quantenzustands von Lichtteilchen speichern und über weite Entfernungen übertragen können, ein wichtiger Schritt.

Internationale Zusammenarbeit

Technisch stelle das Experiment im optischen Frequenzbereich hohe Ansprüche an die Grösse des Hohlraums, der den Wellenlängen angepasst sein muss, und den Reflexionsgrad der Spiegel, damit das Photon möglichst lange im Hohlraum bleibt.

Die im Experiment verwendeten Quantenpunkte aus dem Halbleiter sowie einen Teil des verspiegelten Hohlraumes wurden von der Gruppe um Prof. Dr. Andreas D. Wieck und Dr. Arne Ludwig von der Ruhr-Universität Bochum hergestellt; der andere Teil der Hohlraumverspiegelung erfolgte an der Université de Lyon. Theoretische Unterstützung lieferten die Theoriegruppe Quantenoptik um Prof. Dr. Nicolas Sangouard von der Universität Basel.

Finanzielle Mittel für die Basler Forschenden stammen vom NCCR QSIT, dem Schweizerischen Nationalfonds sowie Horizon 2020.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Richard J. Warburton, Universität Basel, Departement Physik, Tel. +41 61 207 35 60, E-Mail: richard.warburton@unibas.ch

Originalpublikation:

Daniel Najer, Immo Söllner, Pavel Sekatski, Vincent Dolique, Matthias C. Löbl, Daniel Riedel, Rüdiger Schott, Sebastian Starosielec, Sascha R. Valentin, Andreas D. Wieck, Nicolas Sangouard, Arne Ludwig & Richard J. Warburton
A gated quantum dot strongly coupled to an optical microcavity
Nature (2019), doi: 10.1038/s41586-019-1709-y
https://www.nature.com/articles/s41586-019-1709-y

Reto Caluori | Universität Basel

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ein ultraschnelles Mikroskop für die Quantenwelt
24.01.2020 | Max-Planck-Institut für Festkörperforschung

nachricht Solar Orbiter: Generalprobe für das Doppelteleskop PHI
22.01.2020 | Max-Planck-Institut für Sonnensystemforschung

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein ultraschnelles Mikroskop für die Quantenwelt

Was in winzigen elektronischen Bauteilen oder in Molekülen geschieht, lässt sich nun auf einige 100 Attosekunden und ein Atom genau filmen

Wie Bauteile für künftige Computer arbeiten, lässt sich jetzt gewissermaßen in HD-Qualität filmen. Manish Garg und Klaus Kern, die am Max-Planck-Institut für...

Im Focus: Integrierte Mikrochips für elektronische Haut

Forscher aus Dresden und Osaka präsentieren das erste vollintegrierte Bauelement aus Magnetsensoren und organischer Elektronik und schaffen eine wichtige Voraussetzung für die Entwicklung von elektronischer Haut.

Die menschliche Haut ist faszinierend und hat viele Funktionen. Eine davon ist der Tastsinn, bei dem vielfältige Informationen aus der Umgebung verarbeitet...

Im Focus: Dresdner Forscher entdecken Mechanismus bei aggressivem Krebs

Enzym blockiert Wächterfunktion gegen unkontrollierte Zellteilung

Wissenschaftler des Universitätsklinikums Carl Gustav Carus Dresden im Nationalen Centrum für Tumorerkrankungen Dresden (NCT/UCC) haben gemeinsam mit einem...

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

HDT-Tagung: Sensortechnologien im Automobil

24.01.2020 | Veranstaltungen

Tagung befasst sich mit der Zukunft der Mobilität

22.01.2020 | Veranstaltungen

ENERGIE – Wende. Wandel. Wissen.

22.01.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Minutiöse Einblicke in das zelluläre Geschehen

24.01.2020 | Biowissenschaften Chemie

HDT-Tagung: Sensortechnologien im Automobil

24.01.2020 | Veranstaltungsnachrichten

Ein ultraschnelles Mikroskop für die Quantenwelt

24.01.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics