Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Freiburger Forschende untersuchen die ultraschnelle Reaktion von laserangeregtem supraflüssigem Helium

08.01.2020

Einem Team um Prof. Dr. Frank Stienkemeier vom Physikalischen Institut der Universität Freiburg und Dr. Marcel Mudrich von der Universität Aarhus/Dänemark, ist es gelungen, die ultraschnelle Reaktion von Nanotröpfchen aus Helium nach Anregung mit extremer ultravioletter Strahlung (XUV) durch einen so genannten Frei-Elektronen-Laser in Echtzeit zu verfolgen. Die Ergebnisse haben die Wissenschaftlerinnen und Wissenschaftler in der aktuellen Ausgabe der Fachzeitschrift Nature Communications veröffentlicht.

Laser für hochintensive und ultrakurze XUV sowie Röntgenstrahlung eröffnen Forschenden neue Möglichkeiten, um die grundlegenden Eigenschaften von Materie genau zu untersuchen.


Durch ultrakurze Laserpulse angeregte Helium-Nanotröpfchen vor dem Freie-Elektronen-Laser FERMI.

Foto: AG Stienkemeier

Bei vielen der dafür stattfindenden Experimente sind Materialproben im Nanometerbereich von besonderem Interesse. Einige Wissenschaftler verwenden dabei nanometergrosse Heliumtröpfchen als Transportmittel, um eingebettete Moleküle und molekulare Strukturen zu untersuchen.

Diese sind dafür ideal geeignet, weil sie außergewöhnliche Eigenschaften besitzen: Sie haben eine extrem niedrige Temperatur von nur 0,37 Grad über dem absoluten Temperaturnullpunkt und können sich reibungslos bewegen, weshalb sie als Supraflüssigkeit gelten.

Zudem sind Heliumtröpfchen an chemischen Vorgängen der eingebetteten Moleküle meist nicht beteiligt und für infrarotes sowie sichtbares Licht völlig transparent.

Wie das supraflüssige Tröpfchen selbst reagiert, wenn es direkt von einem intensiven XUV Laserpuls getroffen wird, wollte nun das Team um Stienkemeier und Mudrich herausfinden.

Dafür nutzten die Forschenden den derzeit weltweit einzigen so genannten geseedeten, also einem laser-gesteuerten, Freie-Elektronen-Laser FERMI in Triest/Italien, der wellenlängenabstimmbare hochintensive XUV-Pulse liefert.

Gestützt von Modellrechnungen identifizierten die Wissenschaftler dadurch drei elementare Reaktionsschritte: eine sehr schnelle Lokalisierung von Elektronen, die Besetzung metastabiler Zustände sowie die Bildung einer Hohlraumblase, die schließlich an der Oberfläche der Tröpfchen zerplatzt und dabei ein einzelnes angeregtes Heliumatom ausstößt.

„Es ist uns erstmalig gelungen, diese Prozesse im supraflüssigen Helium, die in extrem kurzer Zeit ablaufen, direkt zeitlich zu verfolgen“ sagt Mudrich. „Die Ergebnisse helfen zu verstehen, wie Nanopartikel mit energetischer Strahlung wechselwirken und zerfallen“, ergänzt Stienkemeier.

„Das ist eine nötige Grundlage für die Arbeiten zur direkten Abbildung einzelner Nanopartikel“, erklärt der Freiburger Physiker, „wie sie an neuen intensiven Strahlungsquellen wie zum Beispiel dem europäischen Röntgenlaser XFEL in Hamburg vorangetrieben werden“.

Originalpublikation:

Mudrich, M., LaForge, A., Ciavardini, A., O'Keeffe, P., Callegari, C., Coreno, M., Demidovich, A., Devetta, M., Di Fraia, M., Drabbels, M., Finetti, P., Gessner, O., Grazioli, C., Hernando, A., Neumark, D., Ovcharenko, Y., Piseri, P., Plekan, O., Prince, K., Richter, R., Ziemkiewicz, M., Möller, T., Eloranta, J., Pi, M., Barranco, M., Stienkemeier, F. (2020): „Ultrafast relaxation of photoexcited superfluid He nanodroplets“ In: Nature Communications 11. DOI: 10.1038/s41467-019-13681-6

Bildunterschrift:
Durch ultrakurze Laserpulse angeregte Helium-Nanotröpfchen vor dem Freie-Elektronen-Laser FERMI. Foto: AG Stienkemeier

Kontakt:
Prof. Dr. Frank Stienkemeier
Physikalisches Institut
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-7609
E-Mail: stienkemeier@uni-freiburg.de

Originalpublikation:

https://www.nature.com/articles/s41467-019-13681-6

Nicolas Scherger | Albert-Ludwigs-Universität Freiburg im Breisgau
Weitere Informationen:
http://www.uni-freiburg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantenimaging: Unsichtbares sichtbar machen
02.04.2020 | Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF

nachricht Internationales Physiker-Team berechnet Effekt virtueller quarks in der Streuung von zwei Lichtquanten
02.04.2020 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenimaging: Unsichtbares sichtbar machen

Verschränkte Lichtteilchen lassen sich nutzen, um Bildgebungs- und Messverfahren zu verbessern. Ein Forscherteam am Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF in Jena hat eine Quantenimaging-Lösung entwickelt, die in extremen Spektralbereichen und mit weniger Licht genaueste Einblicke in Gewebeproben ermöglichen kann.

Optische Analyseverfahren wie Mikroskopie und Spektroskopie sind in sichtbaren Wellenlängenbereichen schon äußerst effizient. Doch im Infrarot- oder...

Im Focus: Sensationsfund: Spuren eines Regenwaldes in der Westantarktis

90 Millionen Jahre alter Waldboden belegt unerwartet warmes Südpol-Klima in der Kreidezeit

Ein internationales Forscherteam unter Leitung von Geowissenschaftlern des Alfred-Wegener-Institutes, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI)...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blockierung des Eisentransports könnte Tuberkulose stoppen

Tuberkulose-Bakterien brauchen Eisen zum Überleben. Wird der Eisentransport in den Bakterien gestoppt, so kann sich der Tuberkulose-Erreger nicht weiter vermehren. Nun haben Forscher der Universität Zürich die Struktur des Transportproteins ermittelt, das für die Eisenzufuhr zuständig ist. Dies eröffnet Möglichkeiten zur Entwicklung neuer Medikamente.

Einer der verheerendsten Erreger, der sich im Inneren menschlicher Zellen vermehren kann, ist Mycobacterium tuberculosis – der Bazillus, der Tuberkulose...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

Europäischer Rheumatologenkongress EULAR 2020 wird zum Online-Kongress

30.03.2020 | Veranstaltungen

“4th Hybrid Materials and Structures 2020” findet web-basiert statt

26.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Quantenimaging: Unsichtbares sichtbar machen

02.04.2020 | Physik Astronomie

Innovative Materialien und Bauelemente für die Terahertz-Elektronik

02.04.2020 | Materialwissenschaften

Besser gewappnet bei Überflutungen in der Stadt

02.04.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics