Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Filmpremiere mit Super-Mikroskop und Nanoröhrchen: Erstmals Entstehen von Atom-Verbindungen im Bewegtbild festgehalten

20.01.2020

Weltpremiere in der Elektronenmikroskopie: Erstmals ist es Forschenden der Universitäten Ulm und Nottingham gelungen, das Entstehen und Brechen von chemischen Atom-Verbindungen filmisch festzuhalten. Dabei sind diese Bindeglieder eine halbe Million Mal kleiner als die Breite eines menschlichen Haares! Möglich wurde dieser Erfolg durch das Ulmer Supermikroskop SALVE und winzige Kohlenstoff-Nanoröhren. Die Fachpublikation ist im Journal "Science Advances erschienen.

Atome sind die Bausteine unserer Welt: Dabei ist die Frage, wie sich diese winzigen Teilchen verbinden und voneinander lösen noch nicht vollständig beantwortet. Das Entstehen und Brechen dieser chemischen Verbindungen in Echtzeit festzuhalten, gehörte bislang zu den großen Herausforderungen der Bildgebung.


Innenansicht des einmaligen Mikroskops SALVE an der Universität Ulm

Foto: Heiko Grandel

Nun ist einer deutsch-britischen Forschergruppe um Professorin Ute Kaiser von der Universität Ulm das beinahe Unmögliche geglückt: Zum ersten Mal konnten sie mithilfe des Supermikroskops SALVE und winzigen Kohlenstoff-Nanoröhren das Entstehen und Vergehen einer chemischen Verbindung filmisch festhalten.

Dabei ist dieses Bindeglied eine halbe Million Mal kleiner als die Breite eines menschlichen Haares! Ihr Fachbeitrag ist in der renommierten Fachzeitschrift „Science Advances“ veröffentlicht worden.

Feste, flüssige und gasförmige Stoffe sowie lebende Organismen: Die gesamte Natur basiert auf chemischen Atom-Verbindungen. Im Bewegtbild festzuhalten, wie diese Verbindungen entstehen, galt bisher als unmöglich: Die Bindeglieder zwischen zwei Atomen haben nämlich lediglich einen Durchmesser von unfassbar geringen 0,1 bis 0,3 Nanometern.

Doch nun ist Forschenden um die Ulmer Mikroskopie-Expertin Professorin Ute Kaiser und Professor Andrei Khlobystov von der University of Nottingham der Durchbruch geglückt: Mithilfe des einzigartigen Ulmer Transmissionselektronenmikroskops SALVE sowie winzigen Kohlenstoff-Nanoröhren konnten sie das Verhalten eines Atompaares in Echtzeit auf der atomaren Skala filmen.

Bei den verwendeten Röhrchen handelt es sich um hohle Zylinder mit einem Durchmesser von einem bis zwei Nanometern. „Die Kohlenstoff-Nanoröhren helfen uns, Atome und Moleküle ,einzufangen‘ und sie nach unseren Wünschen zu positionieren“, erklärt Andrei Khlobystov.

Für ihre einmaligen Aufnahmen haben die Wissenschaftlerinnen und Wissenschaftler zwei Atome des Übergangsmetalls Rhenium (Re2) eingefangen und mit dem doppelt aberrationskorrigierten Transmissionselektronenmikroskops SALVE aufgenommen.

Dabei erfüllt der Elektronenstrahl gleich zwei Aufgaben: Zum einen hilft der Strahl, die genaue Position der Atome darzustellen und zum anderen aktiviert er die chemische Reaktion. Dadurch ist es den Forschenden bereits in der Vergangenheit gelungen, molekulare Reaktionen aufzunehmen. „Mit dem SALVE-Mikroskop konnten wir jetzt die Dynamik der Rhenium-Atome in den Nanoröhrchen nachvollziehen. Dabei haben wir festgestellt, dass sich die Länge der Verbindung schrittweise verändert“, beschreibt Ute Kaiser, Leiterin der Materialwissenschaftlichen Elektronenmikroskopie an der Universität Ulm.

Darüber hinaus hat der Ulmer Erstautor Dr. Kecheng Cao ein ungewöhnliches Phänomen beobachtet: Die Atome scheinen als Paar, im Gleichschritt, das Nanoröhrchen entlang zu laufen. „Die Paarbewegungen waren erstaunlich gut zu erkennen. Während die Atome das Röhrchen hinunterwanderten wurde ihre Verbindung stärker oder schwächer – offenbar abhängig von der jeweiligen Umgebung“, erläutert Kecheng Cao.

Mit der Kombination aus Transmissionselektronenmikroskopie und Kohlenstoff-Nanoröhrchen können die Forschenden also im Bewegtbild festhalten, wie sich die Atome verbinden, voneinander lösen und womöglich eine erneue Verbindung zum Re2- Molekül eingehen.

Weiterhin erhielten sie neue Einblicke in die Chemie der Übergangsmetalle: „Verbindungen von Metall-Atomen sind sehr wichtig in der Chemie – insbesondere wenn es um das Verständnis von magnetischen, elektronischen und katalytischen Materialeigenschaften geht. Dabei können Übergangsmetalle wie Rhenium verschiedene Arten von Verbindungen ausbilden.

Im TEM-Experiment haben wir herausgefunden, dass Rhenium-Atome vor allem durch eine vierfach-Verbindung gekoppelt sind“, sagt Dr. Stephen Skowron von der University of Nottingham.

Nach Einschätzung der Autoren haben sie weltweit erstmals das Entstehen und Brechen von Verbindungen auf der atomaren Ebene filmisch festgehalten. „Damit erweitern wir die Grenzen der molekularen Bildgebung: Künftig könnte die Elektronenmikroskopie zu einer wichtigen Methode werden, um die Dynamik chemischer Reaktionen in Echtzeit zu untersuchen“, resümieren die Professoren Ute Kaiser und Andrei Khlobystov.

Pressemitteilung mit Material der University of Nottingham

Wissenschaftliche Ansprechpartner:

Weitere Informationen: Prof. Dr. Ute Kaiser, Tel.: 0731/50-22950, ute.kaiser@uni-ulm.de

Originalpublikation:

Kecheng Cao, Stephen T. Skowron, Johannes Biskupek, Craig T. Stoppiello, Christopher Leist, Elena Besley, Andrei N. Khlobystov, Ute Kaiser. Imaging an unsupported metal-metal bond in dirhenium molecules at the atomic scale. Science Advances. https://doi.org/10.1126/sciadv.aay5849

Weitere Informationen:

https://www.uni-ulm.de/nawi/nawi-home/nawi-detailseiten/news-detail/article/film... Original-Pressemitteilung mit weiteren Abbildungen

Annika Bingmann | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantencomputern das Lernen beibringen
24.02.2020 | Leibniz Universität Hannover

nachricht Die Loopings der Bakterien: Forschungsteam mit Beteiligung der Universität Göttingen analysiert Fortbewegung
24.02.2020 | Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Loopings der Bakterien: Forschungsteam mit Beteiligung der Universität Göttingen analysiert Fortbewegung

Das magnetotaktische Bakterium Magnetococcus marinus schwimmt mit Hilfe von zwei Bündeln von Geißeln. Außerdem besitzen die Bakterienzellen eine Art intrazelluläre Kompassnadel und können daher mit einem Magnetfeld gesteuert werden. Sie werden deshalb als biologisches Modell für Mikroroboter benutzt. Ein internationales Team der Universität Göttingen, des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung in Potsdam und der CEA Cadarache (Frankreich) hat nun aufgeklärt, wie sich diese Bakterien bewegen und deren Schwimmgeschwindigkeit bestimmt. Die Ergebnisse sind in der Fachzeitschrift eLife erschienen.

Die Forscherinnen und Forscher nutzten eine Kombination von neuen experimentellen Methoden und Computersimulationen: Sie verfolgten die Bewegung der...

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schiffsexpedition bringt Licht ins Innere der Erde

24.02.2020 | Geowissenschaften

Elektronenbeugung zeigt winzige Kristalle in neuem Licht

24.02.2020 | Biowissenschaften Chemie

Antikörper als Therapiealternative bei Tumoren am Hör- und Gleichgewichtsnerv?

24.02.2020 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics