Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erfolg für Teilchenbeschleuniger der Zukunft: Elektronen reiten Plasmawelle

30.08.2018

Physikern könnte sich bald eine neue Tür zu den Geheimnissen des Universums öffnen. Der internationalen AWAKE-Kooperation ist ein Durchbruch auf dem Weg zu einer neuen Art von Teilchenbeschleunigern gelungen. Das Experiment, bei dem Elektronen auf einer Plasmawelle surfen, beschleunigt Teilchen mit wesentlich geringerem Aufwand als etwa der LHC und andere bisherige Teilchenbeschleuniger. So könnten Physiker die Teilchen mit wesentlich höheren Energien zusammenprallen lassen als bislang – und mit den Spuren der Kollisionen neue Erkenntnisse zum Urknall und zum Aufbau der Materie gewinnen. Die Ergebnisse sind jetzt in Nature veröffentlicht worden.

So leistungsstark die aktuellen Maschinen wie zum Beispiel der Large Hadron Collider (LHC) am CERN auch sind: Schon jetzt ist abzusehen, dass deutlich höhere Energien gebraucht werden, um offene Fragen in der Teilchenphysik zu beantworten:


Das Elektronenstrahlrohr von AWAKE

CERN

Gibt es Supersymmetrie, was ist die Dunkle Materie, welche Kraft steckt hinter der Dunklen Energie? Allerdings lassen sich die bisher verwendeten Technologien nur mit hohem Aufwand verbessern und ausbauen.

Daher stellt sich die Frage nach alternativen, kostengünstigeren Beschleunigerkonzepten. Mit AWAKE entwickeln Wissenschaftler derzeit eine vielversprechende Technologie für Linearbeschleuniger, die Elektronen als Kollisionsmaterial nutzen.

Gleiche Energie auf 50fach geringerer Strecke

„Unser Team verfolgt das Ziel, Elektronen mit Hilfe eines Plasmas auf einer relativ kurzen Distanz zu beschleunigen“, sagt Allen Caldwell, Direktor am Max-Planck-Institut für Physik und Sprecher von AWAKE. „Wir gehen davon aus, dass wir in einem künftigen Plasmabeschleuniger nur etwa einen Meter brauchen, um Elektronen auf einen Gigaelektronenvolt (GeV) zu bringen.“ Zum Vergleich: herkömmliche Linearbeschleuniger benötigen dafür 50 Meter.

Nach vierjähriger Entwicklungszeit vermelden die Wissenschaftler nun den Durchbruch: Am 25. Mai 2018 beobachteten sie erstmals, wie sich mit AWAKE Elektronen beschleunigen ließen. Die Elektronen erreichten dabei eine Energie von zwei GeV.

„Mit einem solchen Erfolg hatten wir erst gegen Ende des Jahres gerechnet“, sagt Allen Caldwell. „Mit der jetzt erzielten Energie haben sich unsere Erwartungen voll erfüllt. In dieser frühen Projektphase ging es zunächst darum zu überprüfen, inwieweit sich das Prinzip der Plasmabeschleunigung umsetzen lässt.“

Protonen beschleunigen Elektronen

AWAKE nutzt ein Plasma, eine gasförmige Mischung aus positiv geladenen Atomen und negativen Elektronen, das sich in einer etwa zehn Meter langen Kammer befindet, der Plasmazelle. In diese wird ein Protonenstrahl eingespritzt.

Auf ihrem Weg durchs Plasma ziehen die positiv geladenen Protonen die negativen Elektronen aus dem Plasma mit und produzieren eine Art Kielwelle. Speisen die Wissenschaftler zusätzliche Elektronen ein, reiten diese auf der Welle und werden beschleunigt. Die Idee der Kielfeld-Beschleunigung (englisch: Plasma Wakefield Accelaration) ist allerdings nicht ganz neu; schon in den 1970er Jahren war sie als innovativer Ansatz im Gespräch. Die ersten Versuche verwendeten allerdings keine Protonen als Wellengenerator.

Zunächst erzeugte man die Plasmawellen mit Elektronen oder einem Laser. „Die erzeugten Wellen waren allerdings zu schwach für einen effektiven Teilchentransport über eine längere Distanz“, erklärt Patric Muggli, AWAKE-Projektleiter am MPP. AWAKE verwendet als erstes Experiment Protonen: Sie sind schwerer, können das Plasma tiefer durchdringen und damit andere Teilchen auf einer längeren Strecke mittragen. „Das Ergebnis ist eine höhere Energie der mitsurfenden Teilchen“, so Muggli.

Erste Experimente ab dem Jahr 2024

Die Verwendung eines Protonenstrahls ist auch der Grund, warum sich AWAKE am CERN befindet. Denn so können die Wissenschaftler energiereiche Protonen aus dem SPS-Ring, einem der LHC-Vorbeschleuniger verwenden.

Wie geht es nach diesem Meilenstein weiter? Bis zum Ende des Jahres führen die Wissenschaftler Versuche mit dem bestehenden Aufbau durch. Danach folgt ein zweijähriger Shut-down des LHC und der anderen Beschleuniger am CERN. Diese Zeit nutzen die Wissenschaftler, um die Plasmazelle weiterzuentwickeln. Dabei hat das AWAKE-Team ein klares Ziel vor Augen.

„Schon 2024 wollen wir zeigen, wie AWAKE für wissenschaftliche Projekte eingesetzt werden kann“, sagt Allen Caldwell. – „Zum Beispiel um die Feinstruktur von Protonen zu verstehen oder nach neuen, Teilchen wie den ‚dunklen Photonen‘ zu suchen, die als Kandidat für Dunkle Materie infrage kommen.“

(*) AWAKE:
Das Advanced Wakefield Experiment ist das erste Experiment, das ein von Protonen getriebenes Plasmafeld nutzt, um Energien zu beschleunigen. AWAKE ist ein internationales Forschungsprojekt, an dem sich 18 Forschungseinrichtungen aus acht Ländern beteiligen. In Deutschland sind diese neben dem Max-Planck-Institut für Physik das DESY (Hamburg), die Heinrich-Heine-Universität (Heidelberg), die Ludwig-Maximilians-Universität (München), das Max-Planck-Institut für Plasmaphysik (Greifswald) und die Philipps-Universität (Marburg).

Publikation: Acceleration of electrons in the plasma wakefield of a proton bunch, AWAKE Collaboration, Nature 2018, DOI: 10.1038/s41586-018-0485-4

Wissenschaftliche Ansprechpartner:

Max-Planck-Institut für Physik

Prof. Dr. Allen Caldwell
caldwell@mpp.mpg.de
Tel.: +49 89 32354-529

Dr. Patric Muggli
muggli@mpp.mpg.de
Tel.:+49 89 32 354 580 (MPP); +41 75 411 4823 (CERN)

Originalpublikation:

Acceleration of electrons in the plasma wakefield of a proton bunch, AWAKE Collaboration, Nature 2018, DOI: 10.1038/s41586-018-0485-4

Weitere Informationen:

https://www.mpp.mpg.de/aktuelles/meldungen/detail/elektronen-auf-der-plasmawelle...
https://cds.cern.ch/yourbaskets/display_public?bskid=23701
https://cernbox.cern.ch/index.php/s/FAAtA1eJ0GRnu9z

Barbara Wankerl | Max-Planck-Institut für Physik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wettrennen in Sonnennähe: Ionen sind schneller als Atome
22.03.2019 | Georg-August-Universität Göttingen

nachricht Die Zähmung der Lichtschraube
22.03.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Zähmung der Lichtschraube

Wissenschaftler vom DESY und MPSD erzeugen in Festkörpern hohe-Harmonische Lichtpulse mit geregeltem Polarisationszustand, indem sie sich die Kristallsymmetrie und attosekundenschnelle Elektronendynamik zunutze machen. Die neu etablierte Technik könnte faszinierende Anwendungen in der ultraschnellen Petahertz-Elektronik und in spektroskopischen Untersuchungen neuartiger Quantenmaterialien finden.

Der nichtlineare Prozess der Erzeugung hoher Harmonischer (HHG) in Gasen ist einer der Grundsteine der Attosekundenwissenschaft (eine Attosekunde ist ein...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetische Mikroboote

Nano- und Mikrotechnologie sind nicht nur für medizinische Anwendungen wie in der Wirkstofffreisetzung vielversprechende Kandidaten, sondern auch für die Entwicklung kleiner Roboter oder flexibler integrierter Sensoren. Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) haben mit einer neu entwickelten Methode magnetische Mikropartikel hergestellt, die den Weg für den Bau von Mikromotoren oder die Zielführung von Medikamenten im menschlichen Körper, wie z.B. zu einem Tumor, ebnen könnten. Die Herstellung solcher Strukturen sowie deren Bewegung kann einfach durch Magnetfelder gesteuert werden und findet daher Anwendung in einer Vielzahl von Bereichen.

Die magnetischen Eigenschaften eines Materials bestimmen, wie dieses Material auf das Vorhandensein eines Magnetfeldes reagiert. Eisenoxid ist der...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Goldkugel im goldenen Käfig

„Goldenes Fulleren“: Liganden-geschützter Nanocluster aus 32 Goldatomen

Forschern ist es gelungen, eine winzige Struktur aus 32 Goldatomen zu synthetisieren. Dieser Nanocluster hat einen Kern aus 12 Goldatomen, der von einer Schale...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größte nationale Tagung 2019 für Nuklearmedizin in Bremen

21.03.2019 | Veranstaltungen

6. Magdeburger Brand- und Explosionsschutztage vom 25. bis 26.3. 2019

21.03.2019 | Veranstaltungen

Teilchenphysik trifft Didaktik und künstliche Intelligenz in Aachen

20.03.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Zähmung der Lichtschraube

22.03.2019 | Physik Astronomie

Saarbrücker Forscher erleichtern durch Open Source-Software den Durchblick bei Massen-Sensordaten

22.03.2019 | HANNOVER MESSE

Ketten aus Stickstoff direkt erzeugt

22.03.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics