Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

17.10.2018

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese Anwendungen wird hochreines Silizium benötigt, welches in der Herstellung sehr teuer ist. Dies ist darauf zurückzuführen, dass Defekte in einem Material dessen elektrischen Eigenschaften stark beeinflussen.


Ein metall-organisches Netzwerk könnte in Zukunft als Ersatz für das Halbleitermaterial Silizium dienen

© MPI-P

Wissenschaftler um Gruppenleiter Dr. Enrique Cánovas (MPI-P, Abteilung Prof. Dr. Mischa Bonn) haben nun ein neues und kostengünstiges Material entwickelt, ein sogenanntes „metall-organisches Netzwerk“ (engl. metal-organic framework, MOF), welches ähnliche elektrische Eigenschaften wie Silizium aufweist.

Das MOF, welches von der Gruppe von Xinliang Feng in Dresden hergestellt wurde, ist ein hochkristalliner Festkörper, der aus Eisenionen aufgebaut ist, die über organischen Moleküle miteinander verbundenen sind. Aufgrund dieser Struktur (Eisen + organische Moleküle) wird er als metall-organisches Netzwerk bezeichnet. Im Gegensatz zu Silizium kann das Material bei Raumtemperatur hergestellt werden. Die Zusammensetzung, Beschaffenheit und elektronischen Eigenschaften können hierbei während des Herstellungsprozesses einfach angepasst werden.

In der Vergangenheit hergestellte Netzwerke zeigten keine oder eine nur sehr geringe elektrische Leitfähigkeit. Dies verhinderte deren Einsatz in optoelektronischen Komponenten, wo eine ausreichende Beweglichkeit der Elektronen in dem Material bei Anlegen eines elektrischen Feldes benötigt wird. Mit dem neu hergestellten MOF haben die Forscher aus Mainz nun gezeigt, dass sich die Elektronen in dem organisch-basierten Material ähnlich wie in Silizium verhalten.

Das Verhalten wird als sogenanntes „Drude-Verhalten“ bezeichnet (nach dem Physiker Paul Drude). Dies bedeutet, dass sich die Material-Elektronen bei Anlegen eines externen elektrischen Feldes – also einer Spannung – fast frei bewegen können. Dieses Verhalten, meist beobachtbar in inorganischen, hochgeordneten Kristallen wie Silizium, wurde bisher kaum in organisch basierten Materialien beobachtet, da diese normalerweise eine ungeordnete Struktur besitzen.

Zur Charakterisierung der einzigartigen Eigenschaften des hergestellten Netzwerks haben die Wissenschaftler des MPI-P die Technik der ultraschnellen Terahertz-Spektroskopie verwendet. Diese Technologie erlaubt eine Messung der Leitfähigkeit ohne physikalischen und damit störenden Kontakt zum Material. Hierbei wird über einen Laserpuls, der im sichtbaren Spektralbereich liegt, zunächst Energie an die Elektronen des Materials transferiert.

Mit einem zweiten Laserpuls – einem sogenannten Terahertz-Puls, welcher ungefähr einen Faktor 1000 langsamer schwingt als sichtbares Licht, kann nun die Leitfähigkeit dieser angeregten Elektronen abgefragt. Dies resultiert in einem frequenzabhängigen Leitfähigkeits-Signal, durch welches die Wissenschaftler das Drude-Verhalten verifizieren konnten.

„Durch diese Messungen konnten wir Rekord-Mobilitäten der Elektronen in diesem Material messen, welche die Mobilitäten von isolierenden MOFs um einen Faktor 10000 übersteigen“, sagt Dr. Enrique Canovas vom MPI-P. Dies bedeutet, dass sich Elektronen einfach über lange Strecken bei Anlegen eines elektrischen Feldes in dem MOF bewegen können, ein Effekt welcher in 1000 µm langen Proben gemessen werden konnte. Daher ebnet das neue Material den Weg für die Nutzung metall-organischer Netzwerke in der Optoelektronik.

In Zukunft wollen die Forscher daran arbeiten, die elektronischen Eigenschaften des Materials direkt bei der Herstellung über die Zusammensetzung des MOFs modifizieren und vorhersagen zu können. Ihre Forschungsergebnisse haben sie nun in dem renommierten Fachmagazin „Nature Materials“ veröffentlicht.

Über Enrique Cánovas
Enrique Cánovas studierte Angewandte Physik an der Autonomen Universität Madrid und erhielt seinen Doktortitel an der Polytechnischen Universität Madrid verleihen. Dort fokussierte er sich auf die Erforschung von Quantendots für die Entwicklung von hocheffizienten Solarzellen. Nach zwei Jahren als Postdoktorand am FOM Institut AMOLF in den Niederlanden wechselte er 2012 als Gruppenleiter in die Abteilung „Molekulare Spektroskopie“ bei Prof. Mischa Bonn am Max-Planck-Institut für Polymerforschung. Seit April 2018 ist er Professor am IMDEA-Institut für Nanowissenschaft in Madrid. Seine Forschungsinteressen betreffen alle Aspekte der Nanotechnologie, Solartechnologie und der Dynamik von geladenen Teilchen.

Max-Planck-Institut für Polymerforschung
Das Max-Planck-Institut für Polymerforschung (MPI-P) zählt zu den international führenden Forschungszentren auf dem Gebiet der Polymerforschung. Durch die Fokussierung auf weiche Materie und makromolekulare Materialien ist das MPI-P mit seiner Forschungsausrichtung weltweit einzigartig. Seine Aufgabe ist es, neue Polymere herzustellen und zu charakterisieren. Zum Aufgabengebiet gehört auch die Untersuchung ihrer physikalischen und chemischen Eigenschaften. Das MPI-P wurde 1984 gegründet. Es beschäftigt mehr als 500 Mitarbeiterinnen und Mitarbeiter aus dem In- und Ausland, von denen die große Mehrzahl mit Forschungsaufgaben befasst ist.

Wissenschaftliche Ansprechpartner:

Dr. Enrique Canovas
Max-Planck-Institut für Polymerforschung
Ackermannweg 10
D-55128 Mainz
Germany
Tel. +49 (6131) 379-326
Email: canovas@mpip-mainz.mpg.de

Originalpublikation:

High-mobility band-like charge transport in a semiconducting two-dimensional metal–organic framework

Renhao Dong, Peng Han, Himani Arora, Marco Ballabio, Melike Karakus, Zhe Zhang, Chandra Shekhar, Peter Adler, Petko St. Petkov, Artur Erbe, Stefan C. B. Mannsfeld, Claudia Felser, Thomas Heine, Mischa Bonn, Xinliang Feng & Enrique Cánovas

https://www.nature.com/articles/s41563-018-0189-z

Weitere Informationen:

http://www.mpip-mainz.mpg.de/88633/Dr_Enrique_Canovas - Webseite von Dr. Enrique Canovas
http://www.mpip-mainz.mpg.de – Webseite des Max-Planck-Instituts für Polymerforschung

Dr. Christian Schneider | Max-Planck-Institut für Polymerforschung

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovative Materialien und Bauelemente für die Terahertz-Elektronik
02.04.2020 | Forschungsverbund Berlin e.V.

nachricht Wie man Schmutz einfach entfernt
02.04.2020 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Den Regen für Hydrovoltaik nutzen

Wassertropfen, die auf Oberflächen fallen oder über sie gleiten, können Spuren elektrischer Ladung hinterlassen, so dass sich die Tropfen selbst aufladen. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben dieses Phänomen, das uns auch in unserem Alltag begleitet, nun detailliert untersucht. Sie entwickelten eine Methode zur Quantifizierung der Ladungserzeugung und entwickelten zusätzlich ein theoretisches Modell zum besseren Verständnis. Nach Ansicht der Wissenschaftler könnte der beobachtete Effekt eine Möglichkeit zur Energieerzeugung und ein wichtiger Baustein zum Verständnis der Reibungselektrizität sein.

Wassertropfen, die über nicht leitende Oberflächen gleiten, sind überall in unserem Leben zu finden: Vom Tropfen einer Kaffeemaschine über eine Dusche bis hin...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: Quantenimaging: Unsichtbares sichtbar machen

Verschränkte Lichtteilchen lassen sich nutzen, um Bildgebungs- und Messverfahren zu verbessern. Ein Forscherteam am Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF in Jena hat eine Quantenimaging-Lösung entwickelt, die in extremen Spektralbereichen und mit weniger Licht genaueste Einblicke in Gewebeproben ermöglichen kann.

Optische Analyseverfahren wie Mikroskopie und Spektroskopie sind in sichtbaren Wellenlängenbereichen schon äußerst effizient. Doch im Infrarot- oder...

Im Focus: Sensationsfund: Spuren eines Regenwaldes in der Westantarktis

90 Millionen Jahre alter Waldboden belegt unerwartet warmes Südpol-Klima in der Kreidezeit

Ein internationales Forscherteam unter Leitung von Geowissenschaftlern des Alfred-Wegener-Institutes, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI)...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

Europäischer Rheumatologenkongress EULAR 2020 wird zum Online-Kongress

30.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erste SARS-CoV-2-Genome aus Österreich veröffentlicht

03.04.2020 | Biowissenschaften Chemie

Projekt »Lade-PV« gestartet: Fahrzeugintegrierte PV für Elektro-Nutzfahrzeuge

03.04.2020 | Energie und Elektrotechnik

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics