Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanocontainer in den Kern von lebenden Zellen eingeschleust

28.01.2020

Einem interdisziplinären Team der Universität Basel ist es gelungen, künstlichen Nanocontainern einen direkten Weg in den Kern von lebenden Zellen zu bahnen. Sie stellten dafür biokompatible Bläschen her, welche die Poren in der Hülle des Zellkerns passieren können. In Zukunft könnten Wirkstoffe so direkt in die Schaltzentrale von Zellen transportiert werden. Die Forschenden haben diese Ergebnisse in der Zeitschrift «Proceedings of the National Academy of Sciences» veröffentlicht.

Zur Bekämpfung von Krankheiten versuchen verschiedene Therapien in pathologische Vorgänge einzugreifen, die sich im Zellkern abspielen.


Um in den Zellkern (grau) zu gelangen, müssen die Polymersomen (rot) die Kernmembran (dunkelblau) durch die Kernporenporenkomplexe (Lücken in der Kernmembran) passieren. (Bild: Christina Zelmer, Universität Basel; Evi Bieler, Swiss Nanoscience Institute)

Chemotherapien nehmen etwa biochemische Reaktionen ins Visier, die an der Vermehrung von Krebszellen beteiligt sind, während Gentherapien darauf abzielen, beispielsweise ein erwünschtes Gen in den Kern einzubauen.

In der Nanomedizin ist es daher eine grosse Herausforderung, ein verlässliches Verfahren zu entwickeln, mit dem sich Wirkstoffe spezifisch in den Zellkern einschleusen lassen.

Forschende der Universität Basel haben nun winzige Nanocontainer entwickelt, die genau dieses in lebenden Zellen leisten. Sie können die Kernporenkomplexe passieren, die den Transport von Molekülen in den und aus dem Zellkern kontrollieren.

An der Entwicklung dieser sogenannten Polymersome waren ein interdisziplinäres Team mit Wissenschaftlerinnen und Wissenschaftler des Swiss Nanoscience Institute, des Biozentrums und des Departements Chemie beteiligt.

Eintrittskarte in den Kern

Um die künstlichen Containern durch die Kernporenkomplexe zu führen, verwendeten die Forschenden einen Trick: «Die etwa 60 Nanometer grossen Polymersome sind von einer flexiblen Polymermembran umgeben, die in ihrem Aufbau natürlichen Membranen ähnelt», erklärt die Chemikerin Prof. Dr. Cornelia Palivan. «Sie sind jedoch robuster als Bläschen aus Lipiden und lassen sich je nach Wunsch funktionalisieren.»

Zudem konstruierten die Forschenden die Polymersomen mit daran gebundenen Kernlokalisationssignalen – quasi mit einer Eintrittskarte in den Kern. Zellen nutzen diese Signale, um zwischen Molekülen zu unterscheiden, die in den Kern transportiert werden sollen und denen, die im Kern unerwünscht sind. Durch die Signale werden die künstlichen Nanocontainer als zulässige Fracht getarnt.

An die Natur angelehnt

«Die Kernlokalisationssignale ermöglichen es den Polymersomen, die zelluläre Transportmaschinerie zu kapern, welche die Ladung durch die Poren in den Kern liefert», erklärt Prof. Dr. Roderick Lim. Auch diese Eigenschaft orientiert sich an der Natur: «Diese Strategie wird auch von einige Viren verwendet», so der Biophysiker.

Den Weg der Polymersome in den Zellkern konnte die Forschenden verfolgen, indem sie sie mit zwei verschiedenen Farbstoffen füllten und mithilfe mikroskopischer Techniken untersuchten. Rutheniumrot diente dabei nicht nur als Farbstoff, sondern auch als Fracht der Nanocontainer.

Der erfolgreiche Transport der Polymersomen in den Zellkern konnten in vitro wie auch in vivo mit lebenden Zellkulturen bestätigt werden. Geplant ist, diese Farbstoffe in kommenden Untersuchungen durch therapeutische Wirkstoffe zu ersetzen.

«Die Untersuchungen zeigen, dass die von uns entwickelten Nanocontainer mit Lokalisationssignalen ermöglichen, eine künstliche Fracht ganz spezifisch in den Zellkern zu transportieren. Vesikel ohne Kernlokalisationssignale waren im Zellkern nicht nachzuweisen», fasst Erstautorin Christina Zelmer die Studie zusammen.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Roderick Lim, Universität Basel, Biozentrum und Swiss Nanoscience Institute, Tel. +41 61 207 20 83, E-Mail: roderick.lim@unibas.ch

Prof. Dr. Cornelia G. Palivan, Universität Basel, Departement Chemie, Tel. +41 61 207 38 39, E-Mail: cornelia.palivan@unibas.ch

Originalpublikation:

Christina Zelmer, Ludovit P. Zweifel, Larisa E. Kapinos, Ioana Craciun, Zekiye P. Güven, Cornelia G. Palivan and Roderick Y.H. Lim
Organelle-specific targeting of polymersomes into the cell nucleus
PNAS (2020), doi: 10.1073/pnas.1916395117
https://doi.org/10.1073/pnas.1916395117

Reto Caluori | Universität Basel
Weitere Informationen:
https://www.unibas.ch/de/Aktuell/News/Uni-Research/Nanocontainer-in-den-Kern-von-lebenden-Zellen-eingeschleust.html

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Flexibles Fügen und wandlungsfähige Prozessketten: der Schlüssel für effiziente Produktion
17.02.2020 | Universität Paderborn

nachricht Mit Hightech-Analytik besser erkennen, ob der Krebs zurückkehrt
11.02.2020 | Deutsches Krebsforschungszentrum

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lichtpulse bewegen Spins von Atom zu Atom

Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzpulsspektroskopie (MBI) und des Max-Planck-Instituts für Mikrostrukturphysik haben durch die Kombination von Experiment und Theorie die Frage gelöst, wie Laserpulse die Magnetisierung durch ultraschnellen Elektronentransfer zwischen verschiedenen Atomen manipulieren können.

Wenige nanometerdünne Filme aus magnetischen Materialien sind ideale Testobjekte, um grundlegende Fragestellungen des Magnetismus zu untersuchen. Darüber...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erste Untersuchungsergebnisse zum "Sensations-Meteoritenfall" von Flensburg

17.02.2020 | Geowissenschaften

Lichtpulse bewegen Spins von Atom zu Atom

17.02.2020 | Physik Astronomie

Freiburger Forscher untersucht Ursprünge der Beschaffenheit von Oberflächen

17.02.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics