Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sedimentschmelzen im Erdmantel als Quelle für salzhaltige Einschlüsse in Diamanten identifiziert

14.08.2019

Hochdruckexperimente erklären Kalium-Gehalt von Einschlüssen in faserigen Diamanten – Veröffentlichung in Science Advances

Diamanten bilden sich unter hohen Drücken in besonders alten und verdickten Bereichen an der Basis von Kontinenten. Von dort können sie von Magmen mitgerissen und an die Erdoberfläche transportiert werden.


Neu gebildete Chlorid-Kristalle aus den Hochdruckexperimenten: Sie gleichen in ihrer chemischen Zusammensetzung denen von salinen Einschlüssen in natürlichen Diamanten.

Foto/©: M. Förster


Sogenannte Stempel-Zylinder-Apparatur am Institut für Geowissenschaften, Mainz: Mit bis zu 650 Tonnen Presskraft können Proben unter Druck- und Temperaturbedingungen des oberen Erdmantels versetzt werden.

Foto/©: S. Buhre

Diamant, die Hochdruckmodifikation von Kohlenstoff, ist ein begehrter Edelstein, besonders wenn er rein und frei von Einschlüssen ist.

„Doch gerade die sogenannten faserigen Diamanten mit ihren Einschlüssen von Natrium- und Kalium-haltiger Salzlauge sind unfassbar wertvoll für die Geowissenschaften, denn sie geben uns wertvolle Aufschlüsse über die Bildungsbedingungen tief in der Erde“, erklärt Dr. Stephan Buhre vom Institut für Geowissenschaften der Johannes Gutenberg-Universität Mainz (JGU).

Salzhaltige Fluideinschlüsse in Diamanten sind bereits beschrieben worden, jedoch konnte deren Ursprung nicht befriedigend erklärt werden. Einem Team von Wissenschaftlern der Macquarie-Universität in Sydney, der Goethe-Universität in Frankfurt und der Johannes Gutenberg-Universität gelang nun in einem experimentellen Ansatz der Durchbruch. Die Studie wurde im Fachmagazin Science Advances publiziert.

Unter Zuhilfenahme hydraulischer Hochdruckapparaturen wurde untersucht, ob subduzierte marine Sedimente als Quelle für diese Einschlüsse in Frage kommen. Damit dies geschieht, muss ozeanische Kruste und deren Sedimentauflage in einer Subduktionszone bis in eine Tiefe von über 110 Kilometern unter die Kontinente gelangen.

Der Vorgang muss rasch geschehen, damit die Sedimentfracht in einen Druckbereich von über 4 Giga-Pascal – das entspricht dem 40.000-fachen des atmosphärischen Drucks – gelangt, bevor sie bei über 800 Grad Celsius zu schmelzen beginnt, um dann mit dem umgebenden Erdmantel zu reagieren.

Hochdruckexperimente mit marinem Sediment und Peridotit

In den Hochdruckexperimenten wurde marines Sediment und das Erdmantelgestein Peridotit in zwei Lagen übereinandergelegt und in Edelmetallkapseln Drücken und Temperaturen ausgesetzt, wie sie in 120 bis 180 Kilometer Tiefe herrschen.

Dabei bildeten sich am Kontakt beider Schichten kleine Salzkristalle, deren Kalium/Natrium-Verhältnis genau dem der salzhaltigen Fluideinschlüsse in Diamanten entsprach. In Experimenten bei geringeren Drücken, die Tiefen von weniger als 110 Kilometern entsprachen, fehlten diese Salzkristalle und das Kalium aus den recycelten Sedimenten wurde stattdessen in Glimmer-Mineralen gebunden.

Im Gegensatz zu den bisherigen Modellen, bei denen das Meerwasser als Ursprung dieser Salze vermutet wurde, bieten die Sedimente nun eine hervorragende Erklärung für die gemessenen Kalium-Gehalte der salinen Einschlüsse in Diamanten.

Als Nebenprodukt der Reaktion entstanden auch magnesiumreiche Karbonate, die ein wichtiger Bestandteil von Kimberliten sind, den Magmen, die letztendlich die Diamanten an die Erdoberfläche transportieren.

Bildmaterial:
http://www.uni-mainz.de/bilder_presse/09_geowiss_petrologie_sedimente_diamanten_...
Neu gebildete Chlorid-Kristalle aus den Hochdruckexperimenten: Sie gleichen in ihrer chemischen Zusammensetzung denen von salinen Einschlüssen in natürlichen Diamanten.
Foto/©: M. Förster

http://www.uni-mainz.de/bilder_presse/09_geowiss_petrologie_sedimente_diamanten_...
Sogenannte Stempel-Zylinder-Apparatur am Institut für Geowissenschaften, Mainz: Mit bis zu 650 Tonnen Presskraft können Proben unter Druck- und Temperaturbedingungen des oberen Erdmantels versetzt werden.
Foto/©: S. Buhre

Weiterführende Links:
https://www.geowiss.uni-mainz.de/petrologie/ - Petrologie am Institut für Geowissenschaften

Wissenschaftliche Ansprechpartner:

Dr. Stephan Buhre
Petrologie
Institut für Geowissenschaften
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-24112
E-Mail: buhre@uni-mainz.de
https://www.geowiss.uni-mainz.de/petrologie/team-der-ag-petrologie/dr-stephan-bu...

Originalpublikation:

Michael Förster et al.
Melting of sediments in the deep mantle produces saline fluid inclusions in diamonds
Science Advances, 29. Mai 2019
DOI: 10.1126/sciadv.aau2620
https://advances.sciencemag.org/content/5/5/eaau2620.full

Petra Giegerich | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-mainz.de/

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Aufwärts mit dem „Blasen-Taxi“: Mikroorganismen vom Meeresgrund mischen in der Wassersäule bei Methanumsatz mit
27.05.2020 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Artenvielfalt der tropischen Ozeane sinkt als Folge der globalen Erwärmung
26.05.2020 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuartiges Covid-19-Schnelltestverfahren auf Basis innovativer DNA-Polymerasen entwickelt

Eine Forschungskooperation der Universität Konstanz unter Federführung von Professor Dr. Christof Hauck (Fachbereich Biologie) mit Beteiligung des Klinikum Konstanz, eines Konstanzer Diagnostiklabors und des Konstanzer Unternehmens myPOLS Biotec, einer Ausgründung aus der Arbeitsgruppe für Organische Chemie / Zelluläre Chemie der Universität Konstanz, hat ein neuartiges Covid-19-Schnelltestverfahren entwickelt. Dieser Test ermöglicht es, Ergebnisse in der Hälfte der Zeit zu ermitteln – im Vergleich zur klassischen Polymerase-Ketten-Reaktion (PCR).

Die frühe Identifikation von Patienten, die mit dem neuartigen Coronavirus (SARS-CoV-2) infiziert sind, ist zentrale Voraussetzung bei der globalen Bewältigung...

Im Focus: Textilherstellung für Weltraumantennen startet in die Industrialisierungsphase

Im Rahmen des EU-Projekts LEA (Large European Antenna) hat das Fraunhofer-Anwendungszentrum für Textile Faserkeramiken TFK in Münchberg gemeinsam mit den Unternehmen HPS GmbH und Iprotex GmbH & Co. KG ein reflektierendes Metallnetz für Weltraumantennen entwickelt, das ab August 2020 in die Produktion gehen wird.

Beim Stichwort Raumfahrt werden zunächst Assoziationen zu Forschungen auf Mond und Mars sowie zur Beobachtung ferner Galaxien geweckt. Für unseren Alltag sind...

Im Focus: Biotechnologie: Enzym setzt durch Licht neuartige Reaktion in Gang

In lebenden Zellen treiben Enzyme biochemische Stoffwechselprozesse an. Auch in der Biotechnologie sind sie als Katalysatoren gefragt, um zum Beispiel chemische Produkte wie Arzneimittel herzustellen. Forscher haben nun ein Enzym identifiziert, das durch die Beleuchtung mit blauem Licht katalytisch aktiv wird und eine Reaktion in Gang setzt, die in der Enzymatik bisher unbekannt war. Die Studie ist in „Nature Communications“ erschienen.

Enzyme – in jeder lebenden Zelle sind sie die zentralen Antreiber für biochemische Stoffwechselprozesse und machen dort Reaktionen möglich. Genau diese...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: Innovative Sensornetze aus Satelliten

In Würzburg werden vier Kleinst-Satelliten auf ihren Start vorbereitet. Sie sollen sich in einer Formation bewegen und weltweit erstmals ihre dreidimensionale Anordnung im Orbit selbstständig kontrollieren.

Wenn ein Gegenstand wie der Planet Erde komplett ohne tote Winkel erfasst werden soll, muss man ihn aus verschiedenen Richtungen ansehen und die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gebäudewärme mit "grünem" Wasserstoff oder "grünem" Strom?

26.05.2020 | Veranstaltungen

Dresden Nexus Conference 2020 - Gleicher Termin, virtuelles Format, Anmeldung geöffnet

19.05.2020 | Veranstaltungen

Urban Transport Conference 2020 in digitaler Form

18.05.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Wie sich Nervenzellen zum Abruf einer Erinnerung gezielt reaktivieren lassen

29.05.2020 | Biowissenschaften Chemie

Wald im Wandel

29.05.2020 | Agrar- Forstwissenschaften

Schwarzer Stickstoff: Bayreuther Forscher entdecken neues Hochdruck-Material und lösen ein Rätsel des Periodensystems

29.05.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics