Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

pinMOS: Neuartiger Speicher aus OLED und Isolator kann optisch oder elektrisch beschrieben und ausgelesen werden

25.11.2019

An der TU Dresden haben Wissenschaftler des Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) sowie des Center for Advancing Electronics Dresden (cfaed) eine neuartige Speichertechnologie entwickelt, die aus der Kombination einer organischen Leuchtdiode (OLED) und eines Isolators entstand. Mit diesem Bauelement ist es möglich, die gespeicherten Informationen sowohl optisch als auch elektrisch auszulesen. Zudem lassen sich die Informationen schrittweise hinzufügen - somit können mehrere Speicherzustände in einem Bauelement abgebildet werden.

Die Ergebnisse wurden nun in der renommierten Fachzeitschrift „Advanced Functional Materials“ veröffentlicht. Eine Neuerung kam auch bei sämtlichen Messungen in den Versuchsreihen zum Tragen: Diese wurden ausschließlich mit der innovativen Messsoftware „SweepMe!“ durchgeführt, welche vom gleichnamigen Start-Up des IAPP sowie des cfaed entwickelt wurde.


Der pinMOS-Speicher

(c) Yichu Zheng

Der Beginn dieser Geschichte liegt einige Jahre zurück, genauer gesagt im Jahr 2015. Zwei cfaed-Wissenschaftler, beide Fachleute auf dem Gebiet der organischen Elektronik, befinden sich auf der Fahrt zu einer Konferenz in Brasilien, eine lange Busfahrt trennt sie noch vom Veranstaltungsort Porto de Galinhas. Viel Zeit zum Reden. Und so kommt es, dass der eine – Prof. Stefan Mannsfeld (Professur für Organische Bauelemente, cfaed / IAPP) – dem anderen – Dr. Axel Fischer (Professur für Organische Halbleiter, IAPP) von einer Idee erzählt, die er schon eine Weile im Kopf mit sich herumträgt:

Die Kombination herkömmlicher organischer Leuchtdioden (OLEDs) mit einer Isolatorenschicht müsste aufgrund der spezifischen physikalischen Effekte der verwendeten Materialien eine Speichereinheit ergeben, die sowohl mit Licht als auch mit elektrischen Signalen beschrieben und ausgelesen werden kann, so die Idee. Man könnte also von einer zweckentfremdeten Nutzung der OLED-Technik sprechen. Und wie sich herausstellte, hatten sich hier genau die Richtigen getroffen – denn Dr. Fischer konnte berichten, dass die notwendigen Technologien und Erfahrungen am IAPP bereits vorhanden sind – und so war eine wissenschaftliche Erforschung dieser Idee quasi beschlossene Sache. Einige Zeit später war mit Yichu Zheng am Lehrstuhl von Prof. Mannsfeld auch die passende Doktorandin gefunden, die sich diesem Thema widmen würde.

Speichern und Lesen – mit Licht und Strom

Nun liegt das Ergebnis vor und wurde soeben in der Fachzeitschrift Advanced Functional Materials veröffentlicht. Die Wissenschaftler beschreiben darin eine neue Art von programmierbarem organischem kapazitivem Speicher, der eine Kombination aus einer OLED und einem MOS-Kondensator (MOS = Metalloxid-Halbleiter) ist. Die „pinMOS“ genannte Speichereinheit ist ein nichtflüchtiger Memcapacitor mit hoher Wiederholgenauigkeit und Reproduzierbarkeit. Das Besondere ist, dass der pinMOS in der Lage ist, mehrere Zustände zu speichern, da Ladungen schrittweise hinzugefügt oder entfernt werden können. Eine weitere attraktive Eigenschaft ist, dass dieser einfache diodenbasierte Speicher elektrisch und optisch sowohl beschrieben als auch ausgelesen werden kann. Aktuell wird eine Lebensdauer von mehr als 104 Schreib-Lese-Lösch-Zyklen erreicht, und die Speicherzustände können über 24 Stunden erhalten und unterschieden werden. Die Ergebnisse zeigen, dass das pinMOS-Speicherprinzip als zuverlässiges kapazitives Speichermedium für zukünftige Anwendungen in elektronischen und photonischen Schaltungen wie in neuromorphen Computern oder visuellen Speichersystemen vielversprechend ist. Die Koautoren vom Weierstraß-Institut Berlin (WIAS) konnten durch Drift-Diffusionssimulationen zur genauen Interpretation des Funktionsmechanismus beitragen.

Ein Dioden-Kondensator-Speicher wurde bereits 1952 erstmals von Arthur W. Holt auf einer ACM-Konferenz in Kanada vorgestellt, doch erst jetzt erfährt dieses Konzept durch die Verwendung organischer Halbleiter ein Revival, da alle Funktionen einer diskreten Verbindung von Dioden und Kondensator in eine einzige Speicherzelle integriert werden können.

Messen mit SweepMe! – innovativer Ansatz fürs Labor

Alle Messungen innerhalb dieser Studie wurden mit der neuartigen Labor-Messsoftware „SweepMe!“ durchgeführt. Diese wurde von einem Start-up entwickelt, welches eine Ausgründung der TU Dresden ist. Die an der TUD promovierten Physiker Axel Fischer und Felix Kaschura hatten SweepMe! 2018 als Spin-off des IAPP ausgegründet.

In der vorliegenden Studie konnte mit SweepMe! beispielhaft gezeigt werden, wie vielfältig es einsetzbar ist. Ob die Messung von spannungsabhängigen und zeitabhängigen Kapazitäten, die Erstellung von Strom-Spannungskennlinien, die Kombination von Signalgenerator und Oszilloskop oder die Verarbeitung von Bildern einer Industriekamera – alles wurde mit ein und derselben Software umgesetzt. Auch ausgefeilte Parametervariationen, die normalerweise erheblichen Programmier-Aufwand erfordern würden, konnten so in kürzester Zeit realisiert werden. Seit Oktober 2019 ist SweepMe! weltweit kostenlos verfügbar.

Die Studie ist eine Kooperation von TU Dresden (Dresden Integrated Center for Applied Physics and Photonic Materials – IAPP; Center for Advancing Electronics Dresden – cfaed) und Weierstraß-Institut Berlin.

Pressebild:
Download unter: https://bit.ly/35rkE24
Bildautorin: Yichu Zheng
Bildunterschrift: "Der pinMOS-Speicher - ein organisches Halbleiterbauelement, welches aus der Kombination einer OLED und eines Kondensators hervorgeht. Es besitzt die Eigenschaften eines Memcapacitors, interagiert mit Licht und kann schrittweise geschrieben und gelöscht werden kann."


Über das cfaed
Das cfaed ist ein Forschungscluster der TU Dresden (TUD). Als interdisziplinäres Forschungszentrum für Perspektiven der Elektronik ist es als Zentrale Wissenschaftliche Einrichtung an der TUD angesiedelt, bindet jedoch neben der TU Chemnitz auch neun außeruniversitäre Forschungsreinrichtungen in Sachsen als Kooperationsinstitute ein. Mit seiner Vision möchte der Cluster die Zukunft der Elektronik gestalten und revolutionär neue Applikationen initiieren, wie bspw. Elektronik, die keine Bootzeit benötigt, die fähig zur THz-Bildgebung ist, oder komplexe Biosensorik unterstützt. Mit diesen Innovationen werden Leistungssteigerungen und Anwendungen denkbar, die mit der Fortsetzung der heute üblichen, auf Siliziumchips basierenden Technologie nicht möglich wären. Um seine Ziele zu erreichen, vereint cfaed den Erkenntnisdrang der Naturwissenschaften mit der Innovationskraft der Ingenieurwissenschaften.

www.cfaed.tu-dresden.de

Wissenschaftliche Ansprechpartner:

TU Dresden, Center for Advancing Electronics Dresden:
Prof. Stefan Mannsfeld
Professur für Organische Bauelemente
Tel.: +49 351 463-39923
E-mail: stefan.mannsfeld@tu-dresden.de

Matthias Hahndorf
cfaed Wissenschaftskommunikation
Tel.: +49 351 463-42847
E-mail: matthias.hahndorf@tu-dresden.de

SweepMe!
Dr. Axel Fischer
Tel.: +49 351 41882423
E-mail: contact@sweep-me.net
Webseite: https://sweep-me.net/

Originalpublikation:

Paper-Titel: Introducing pinMOS Memory: A Novel, Nonvolatile Organic Memory Device
DOI: 10.1002/adfm.201907119
Autoren: Yichu Zheng, Axel Fischer, Michael Sawatzki, Duy Hai Doan, Matthias Liero, Annegret Glitzky, Sebastian Reineke, Stefan C. B. Mannsfeld
Medium: Advanced Functional Materials, veröffentlicht 07. November 2019

Kim-Astrid Magister | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Advanced Functional Materials Elektronik Halbleiter Isolator OLED Speicher

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Wenn Ionen an ihrem Käfig rütteln
06.04.2020 | Max-Planck-Institut für Polymerforschung

nachricht Zuwachs bei stationären Batteriespeichern
06.04.2020 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wenn Ionen an ihrem Käfig rütteln

In vielen Bereichen spielen „Elektrolyte“ eine wichtige Rolle: Sie sind bei der Speicherung von Energie in unserem Körper wie auch in Batterien von großer Bedeutung. Um Energie freizusetzen, müssen sich Ionen – geladene Atome – in einer Flüssigkeit, wie bspw. Wasser, bewegen. Bisher war jedoch der präzise Mechanismus, wie genau sie sich durch die Atome und Moleküle der Elektrolyt-Flüssigkeit bewegen, weitgehend unverstanden. Wissenschaftler*innen des Max-Planck-Instituts für Polymerforschung haben nun gezeigt, dass der durch die Bewegung von Ionen bestimmte elektrische Widerstand einer Elektrolyt-Flüssigkeit sich auf mikroskopische Schwingungen dieser gelösten Ionen zurückführen lässt.

Kochsalz wird in der Chemie auch als Natriumchlorid bezeichnet. Löst man Kochsalz in Wasser lösen sich Natrium und Chlorid als positiv bzw. negativ geladene...

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Den Regen für Hydrovoltaik nutzen

Wassertropfen, die auf Oberflächen fallen oder über sie gleiten, können Spuren elektrischer Ladung hinterlassen, so dass sich die Tropfen selbst aufladen. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben dieses Phänomen, das uns auch in unserem Alltag begleitet, nun detailliert untersucht. Sie entwickelten eine Methode zur Quantifizierung der Ladungserzeugung und entwickelten zusätzlich ein theoretisches Modell zum besseren Verständnis. Nach Ansicht der Wissenschaftler könnte der beobachtete Effekt eine Möglichkeit zur Energieerzeugung und ein wichtiger Baustein zum Verständnis der Reibungselektrizität sein.

Wassertropfen, die über nicht leitende Oberflächen gleiten, sind überall in unserem Leben zu finden: Vom Tropfen einer Kaffeemaschine über eine Dusche bis hin...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: Quantenimaging: Unsichtbares sichtbar machen

Verschränkte Lichtteilchen lassen sich nutzen, um Bildgebungs- und Messverfahren zu verbessern. Ein Forscherteam am Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF in Jena hat eine Quantenimaging-Lösung entwickelt, die in extremen Spektralbereichen und mit weniger Licht genaueste Einblicke in Gewebeproben ermöglichen kann.

Optische Analyseverfahren wie Mikroskopie und Spektroskopie sind in sichtbaren Wellenlängenbereichen schon äußerst effizient. Doch im Infrarot- oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungsnachrichten

Wenn Ionen an ihrem Käfig rütteln

06.04.2020 | Energie und Elektrotechnik

Virtueller Roboterschwarm auf dem Mars

06.04.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics