Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetisches Origami für die Mikroelektronik

08.07.2019

Forscher aus Dresden und Chemnitz berichten in der Fachzeitschrift „Nature Communications“ über neue Methode zur Herstellung hochpotenter dreidimensionaler Mikroelektronik.

Die Entwicklung dreidimensionaler Mikroelektronik mit exzellenter Leistungsfähigkeit stellt Wissenschaftlerinnen, Wissenschaftler sowie Ingenieurinnen und Ingenieure gleichermaßen vor enorme Herausforderungen. Nach neuen Verfahren wird händeringend gesucht.


Reinraum für die Herstellung dünner Schichten für die Mikroelektronik.

Foto: Jürgen Lösel/IFW Dresden

Ein solches Verfahren ist zum Beispiel das selbstorganisierte Falten von mikroelektronischen Nanomembranen, das aber starken statistischen Schwankungen unterliegt. Darunter leidet die Ausbeute und Zuverlässigkeit sogenannter mikroskopischer Origami-Strukturen, die den hohen Ansprüchen der Mikroelektronik nicht genügen.

Daher ist es nicht verwunderlich, dass sich noch kein industriell einsetzbares Verfahren etabliert hat, das eine zuverlässige und kostengünstige Produktion von selbstorganisierten dreidimensionalen Bauelementen ermöglicht.

In der Fachzeitschrift „Nature Communications“ stellen nun Wissenschaftler um Prof. Dr. Oliver G. Schmidt eine neue Möglichkeit vor, Nanomembranen zu dreidimensionalen mikroelektronischen Bauelementen zu falten. Oliver G. Schmidt leitet im Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden das Institut für Integrative Nanowissenschaften und hat als Professor für Materialsysteme an der Technischen Universität Chemnitz das dortige Zentrum für Materialien, Architekturen und Integration von Nanomembranen (MAIN) initiiert.

Schmidt ist zudem Träger des Leibniz-Preises, dem wichtigsten Forschungsförderpreis in Deutschland.
„Mit dieser Methode haben wir ein großes Problem der 3D-Herstellung von Architekturen aus mikroelektronischen Nanomembranen gelöst.

Die Herstellung kann durch die magnetische Origami-Methode nun zuverlässig durchgeführt werden und hochleistungsfähige mikroelektronische Bauelemente erzeugen. Eine besondere Herausforderung bleibt die Hochskalierung der Technologie für eine Massenfertigung“, ordnet Prof. Schmidt die Ergebnisse ein.

3D-Energiespeicherelemente mit exzellenten Leistungsdaten entstehen
In dem Verfahren nutzen die Forscher die denkbar einfachste Möglichkeit des Faltens, nämlich das bekannte und seit vielen Jahren etablierte Aufwickeln der Nanomembranen.

Zentraler neuer Bestandteil ist die Entwicklung einer Art magnetischer Fernsteuerung, mit der sich der Falt- oder Aufwickelprozess durch ein von außen angelegtes Magnetfeld programmieren und gezielt steuern lässt.

Zum ersten Mal ist es gelungen, die dreidimensionale Anordnung von Nanomembranen reproduzierbar und kontrolliert über große Längenskalen im Bereich von Zentimetern zu realisieren und dabei eine Ausbeute von mehr als 90 Prozent zu erreichen.

Mit dieser neuen Methode von magnetischen Origami-Strukturen haben die Forscher dreidimensionale Mikro-Energiespeicherelemente hergestellt, die exzellente Kenndaten aufweisen und extrem leicht und kompakt sind. Diese Ergebnisse zeigen eindrucksvoll das Potenzial der magnetfeldunterstützten Faltung von Nanomembranen.

Die Vorteile des magnetischen Mikro-Origami kommen ganz besonders zum Tragen, wenn gut ausgerichtete dreidimensionale Strukturen mit vielen Wicklungen von Nanomembranen erforderlich sind. Dies ist zum Beispiel bei neuartigen Mikrobatterien oder passiven elektronischen Bauelementen wie Kondensatoren, Induktoren und Transformatoren der Fall.

Hintergrund: Falten mikroelektronischer Schichtsysteme

Die etablierte Mikroelektronik beruht auf Komponenten, die in zwei Dimensionen definiert und Schicht für Schicht aufgebaut werden. Für viele mikroelektronische Bauelemente wie Mikrobatterien, Spulen und Transformatoren stellt dieses Verfahren aber keine optimale Lösung dar. Vor allem deshalb, weil die Herstellung der Bauteile zu aufwendig ist oder die Leistungsspezifikationen nicht erreicht werden können. Daher wird nach komplett neuen Ansätzen gesucht, die dritte Dimension zu erobern.

Ein solcher Ansatz stellt das selbstorganisierte Falten von mikroelektronischen Schichtsystemen dar. Die Schichtsysteme werden zunächst mit etablierten Techniken in zwei Dimensionen definiert und transformieren sich anschließend von selbst zu dreidimensionalen Origami-Architekturen. Diese sogenannte „Selbstorganisation“ wird zum Beispiel durch den gezielten Abbau von Verspannung in den Schichtsystemen ausgelöst. Das heißt, die Strukturen schnappen wie eine aufgespannte Feder automatisch zusammen, wenn man sie aus der Verankerung löst.

Video auf dem IFW Youtube Kanal: https://youtu.be/7trDnEPbuu0

Wissenschaftliche Ansprechpartner:

Prof. Dr. Oliver G. Schmidt
Leibniz-Institut für Festkörper und Werkstoffforschung Dresden
E-Mail: o.schmidt@ifw-dresden.de

Originalpublikation:

Felix Gabler, Dmitriy D. Karnaushenko, Daniil Karnaushenko, Oliver G. Schmidt; Magnetic origami creates high performance micro devices, Nature Communications 2019. DOI:10.1038/s41467-019-10947-x

Weitere Informationen:

https://youtu.be/7trDnEPbuu0 Alte Falttechnik inspiriert neue Technologie
https://www.nature.com/articles/s41467-019-10947-x

Dr. Carola Langer | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Projekt »Lade-PV« gestartet: Fahrzeugintegrierte PV für Elektro-Nutzfahrzeuge
03.04.2020 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Den Regen für Hydrovoltaik nutzen
03.04.2020 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Den Regen für Hydrovoltaik nutzen

Wassertropfen, die auf Oberflächen fallen oder über sie gleiten, können Spuren elektrischer Ladung hinterlassen, so dass sich die Tropfen selbst aufladen. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben dieses Phänomen, das uns auch in unserem Alltag begleitet, nun detailliert untersucht. Sie entwickelten eine Methode zur Quantifizierung der Ladungserzeugung und entwickelten zusätzlich ein theoretisches Modell zum besseren Verständnis. Nach Ansicht der Wissenschaftler könnte der beobachtete Effekt eine Möglichkeit zur Energieerzeugung und ein wichtiger Baustein zum Verständnis der Reibungselektrizität sein.

Wassertropfen, die über nicht leitende Oberflächen gleiten, sind überall in unserem Leben zu finden: Vom Tropfen einer Kaffeemaschine über eine Dusche bis hin...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: Quantenimaging: Unsichtbares sichtbar machen

Verschränkte Lichtteilchen lassen sich nutzen, um Bildgebungs- und Messverfahren zu verbessern. Ein Forscherteam am Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF in Jena hat eine Quantenimaging-Lösung entwickelt, die in extremen Spektralbereichen und mit weniger Licht genaueste Einblicke in Gewebeproben ermöglichen kann.

Optische Analyseverfahren wie Mikroskopie und Spektroskopie sind in sichtbaren Wellenlängenbereichen schon äußerst effizient. Doch im Infrarot- oder...

Im Focus: Sensationsfund: Spuren eines Regenwaldes in der Westantarktis

90 Millionen Jahre alter Waldboden belegt unerwartet warmes Südpol-Klima in der Kreidezeit

Ein internationales Forscherteam unter Leitung von Geowissenschaftlern des Alfred-Wegener-Institutes, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI)...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

Europäischer Rheumatologenkongress EULAR 2020 wird zum Online-Kongress

30.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erste SARS-CoV-2-Genome aus Österreich veröffentlicht

03.04.2020 | Biowissenschaften Chemie

Projekt »Lade-PV« gestartet: Fahrzeugintegrierte PV für Elektro-Nutzfahrzeuge

03.04.2020 | Energie und Elektrotechnik

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics