Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Zytomegalieviren in Schach gehalten werden

27.06.2019

TWINCORE-Forscher entschlüsseln zelluläre Erkennungsmechanismen des Körpers, die das Zytomegalievirus unter Kontrolle halten

Ein Großteil der Weltbevölkerung ist mit dem wenig bekannten Zytomegalievirus (CMV) infiziert, welches zur Gruppe der Herpesviren gehört. Eine Erstinfektion mit dem Virus erfolgt meist ohne Symptome, resultiert aber in einer lebenslangen versteckten Infektion.


Mäuse, in denen der cGAS/STING-Signalweg ausgeschaltet wurde (STING KO) zeigen nach der CMV-Infektion eine verminderte Immunantwort in der Leber, aber überleben die Virusinfektion.

© Tegtmeyer et al. 2019

Ist das Immunsystem geschwächt, kann das Virus jedoch wieder aktiv werden und schwerste Infektionserkrankungen verursachen, die auch tödlich verlaufen können. Vor allem während der Schwangerschaft können diese Infektionen neuronale Schädigungen des heranwachsenden Kindes hervorrufen.

Bislang gibt es noch keine Impfung, die effektiv gegen CMV-Viren schützt. Die bisher vorhandenen Therapien können die CMV-Infektion nur eindämmen, das Virus aber nicht vollständig zerstören.

Wissenschaftler des TWINCORE, einer gemeinsamen Institution des Helmholtz-Zentrums für Infektionsforschung (HZI) und der Medizinischen Hochschule Hannover (MHH), gingen der Frage nach, wie eine CMV-Infektion von den Körperzellen erspürt wird und wie sich das Virus im Körper verbreitet. Ihre Ergebnisse wurden jetzt im renommierten Fachjournal Nature Communications veröffentlicht.

Die Mechanismen der Infektion mit Zytomegalieviren zu verstehen und aufzuklären, ist Gegenstand vieler Forschungsarbeiten. Einen ersten Schritt machten Wissenschaftler vor wenigen Jahren mit der Identifizierung eines Sensors für freie DNA im Zellplasma. Kurz darauf konnten TWINCORE-Forscher zeigen, dass dieses Sensorsystem, der sogenannte cGAS/STING-Signalweg, in Makrophagen und anderen Immunzelltypen eine Infektion mit Zytomegalieviren erkennen kann, da diese Viren DNA in sich tragen.

In einem deutsch-französischen Projekt, das von der Deutschen Forschungsgemeinschaft (DFG) finanziert ist, beobachteten die TWINCORE-Forscher, dass Mäuse, in denen der cGAS/STING-Signalweg ausgeschaltet wurde, kurz nach der Infektion zwar eine stark verminderte Immunantwort in der Leber zeigen, ansonsten die CMV-Infektion aber problemlos überstehen.

Erst wenn neben dem cGAS/STING-Signalweg auch die Signalübermittlung über weitere Erkennungsrezeptoren ausgeschaltet ist, kommt es zu einer tödlich verlaufenden Erkrankung. „Überraschenderweise vermitteln bei einer CMV-Infektion alle wichtigen bisher bekannten Signalketten gemeinsam die Viruserkennung. So etwas ist bisher bei anderen Viren noch nicht beobachtet worden“, sagt die TWINCORE-Forscherin Pia-Katharina Tegtmeyer.

Zufälle spielen oft eine wichtige Rolle beim Erkenntnisgewinn. In einer früheren Studie zeigten die Forscher, dass das Virus die Leber zwar befällt, sich aber nicht in andere Organe ausbreitet. Für ihre Experimente setzten sie ein Virus ein, das eine verkürzte Form des viralen Proteins MCK2 produziert.

„Damals wussten wir nicht, dass das von uns benutzte Virus einen Defekt in seinem MCK2-Gen hat. Daher reparierten wir für die neue Studie das Virus mit modernsten molekulargenetischen Methoden und wiederholten das Experiment“, sagt Zsolt Ruzsics, der als Projektpartner am Institut für Virologie der Universität Freiburg forscht.

Die Ergebnisse enthüllten gleich mehrere Überraschungen: Der cGAS/STING-Signalweg ist nicht dafür verantwortlich, dass das Virus in der Leber bleibt. Bei den Experimenten der TWINCORE-Forscher wandert das Virus erst ab Tag 8 in die Speicheldrüsen ein. Vermutlich befällt das Virus - dank seines Proteins MCK2 - Zellen des blutbildenden Systems, was die Wanderung von der Leber in die Speicheldrüsen ermöglicht. Dieser Mechanismus der Virusverbreitung ist in Mäusen ohne den cGAS/STING-Signalweg verstärkt.

„Mit dieser Studie sind wir dem Mechanismus, wie eine CMV-Infektion erkannt wird und wie das Virus sich im Körper über verschiedene Organe verbreitet, ein gutes Stück näher gekommen“, sagt Ulrich Kalinke, Leiter des Instituts für Experimentelle Infektionsforschung und Direktor des TWINCORE.

„Es gibt aber noch viel zu tun, bis wir genau verstehen, welche Komponenten des Immunsystems aktiviert werden müssen, damit das Virus vollständig eliminiert werden kann“.

Diese Pressemitteilung und Bildmaterial finden Sie auch auf unserer Webseite unter dem Link https://www.helmholtz-hzi.de/de/aktuelles/news/news-detail/article/complete/wie-...

Helmholtz-Zentrum für Infektionsforschung:
Am Helmholtz-Zentrum für Infektionsforschung (HZI) untersuchen Wissenschaftler die Mechanismen von Infektionen und ihrer Abwehr. Was Bakterien oder Viren zu Krankheitserregern macht: Das zu verstehen soll den Schlüssel zur Entwicklung neuer Medikamente und Impfstoffe liefern. Das HZI ist Mitglied im Deutschen Zentrum für Infektionsforschung (DZIF). http://www.helmholtz-hzi.de

TWINCORE – Zentrum für experimentelle und klinische Infektionsforschung:
Das TWINCORE ist ein im Jahr 2008 gemeinsam vom Helmholtz-Zentrum für Infektionsforschung (HZI) und von der Medizinischen Hochschule Hannover (MHH) gegründetes und betriebenes Forschungszentrum, in dem Mediziner und Naturwissenschaftler eng zusammenarbeiten. Der Schwerpunkt der Arbeit am TWINCORE in Hannover liegt auf der sogenannten Translation: Ergebnisse aus der Grundlagenforschung sollen effizienter und schneller in die medizinische Praxis überführt werden. http://www.twincore.de

Ihre Ansprechpartner:
Susanne Thiele, Pressesprecherin
susanne.thiele@helmholtz-hzi.de
Dr. Andreas Fischer, Wissenschaftsredakteur
andreas.fischer@helmholtz-hzi.de

Helmholtz-Zentrum für Infektionsforschung GmbH
Presse und Kommunikation
Inhoffenstraße 7
D-38124 Braunschweig

Tel.: 0531 6181-1400; -1405

Originalpublikation:

Pia-Katharina Tegtmeyer, Julia Spanier, Katharina Borst, Jennifer Becker, André Riedl, Christoph Hirche, Luca Ghita, Jennifer Skerra, Kira Baumann, Stefan Lienenklaus, Marius Doering, Zsolt Ruzsics, Ulrich Kalinke: STING induces early IFN-β in the liver and constrains myeloid cell-mediated dissemination of murine cytomegalovirus. Nature Communications 2019; doi: 10.1038/s41467-019-10863-0

Susanne Thiele | Helmholtz-Zentrum für Infektionsforschung
Weitere Informationen:
http://www.helmholtz-hzi.de
https://www.helmholtz-hzi.de/de/aktuelles/news/news-detail/article/complete/wie-zytomegalieviren-in-schach-gehalten-werden/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Beleuchtung von Höhlen vertreibt Fledermäuse – die Farbe des Lichts spielt nur untergeordnete Rolle
11.12.2019 | Forschungsverbund Berlin e.V.

nachricht Molekulare Milch-Mayonnaise: Wie Mundgefühl und mikroskopische Eigenschaften bei Mayonnaise zusammenhängen
11.12.2019 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochgeladenes Ion bahnt den Weg zu neuer Physik

In einer experimentell-theoretischen Gemeinschaftsarbeit hat am Heidelberger MPI für Kernphysik ein internationales Physiker-Team erstmals eine Orbitalkreuzung im hochgeladenen Ion Pr9+ nachgewiesen. Mittels einer Elektronenstrahl-Ionenfalle haben sie optische Spektren aufgenommen und anhand von Atomstrukturrechnungen analysiert. Ein hierfür erwarteter Übergang von nHz-Breite wurde identifiziert und seine Energie mit hoher Präzision bestimmt. Die Theorie sagt für diese „Uhrenlinie“ eine sehr große Empfindlichkeit auf neue Physik und zugleich eine extrem geringe Anfälligkeit gegenüber externen Störungen voraus, was sie zu einem einzigartigen Kandidaten zukünftiger Präzisionsstudien macht.

Laserspektroskopie neutraler Atome und einfach geladener Ionen hat während der vergangenen Jahrzehnte Dank einer Serie technologischer Fortschritte eine...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: Wie Graphen-Nanostrukturen magnetisch werden

Graphen, eine zweidimensionale Struktur aus Kohlenstoff, ist ein Material mit hervorragenden mechanischen, elektronischen und optischen Eigenschaften. Doch für magnetische Anwendungen schien es bislang nicht nutzbar. Forschern der Empa ist es gemeinsam mit internationalen Partnern nun gelungen, ein in den 1970er Jahren vorhergesagtes Molekül zu synthetisieren, welches beweist, dass Graphen-Nanostrukturen in ganz bestimmten Formen magnetische Eigenschaften aufweisen, die künftige spintronische Anwendungen erlauben könnten. Die Ergebnisse sind eben im renommierten Fachmagazin Nature Nanotechnology erschienen.

Graphen-Nanostrukturen (auch Nanographene genannt) können, je nach Form und Ausrichtung der Ränder, ganz unterschiedliche Eigenschaften besitzen - zum Beispiel...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Analyse internationaler Finanzmärkte

10.12.2019 | Veranstaltungen

QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien

04.12.2019 | Veranstaltungen

Die Zukunft der Arbeit

03.12.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kein Seemannsgarn: Hochseeschifffahrt soll schadstoffärmer werden

11.12.2019 | Ökologie Umwelt- Naturschutz

Vernetzte Produktion in Echtzeit: Deutsch-schwedisches Testbed geht in die zweite Phase

11.12.2019 | Informationstechnologie

Verbesserte Architekturgläser durch Plasmabehandlung – Reinigung, Vorbehandlung & Haftungssteigerung

11.12.2019 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics