Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn du zwitscherst, bin ich still: Wie Neuronen abwechselndes Rufen bei Zebrafinken steuern

10.01.2020

Zebrafinken wechseln sich beim Kommunizieren ab, ganz ähnlich wie Menschen das auch im Gespräch tun. Forscher*innen vom Max-Planck-Institut für Ornithologie in Seewiesen haben nun herausgefunden, was dabei im Vogelgehirn vorgeht. Sie konnten sowohl die Nervenzellen identifizieren, die am Auslösen eines Rufes beteiligt sind, als auch jene, die vor einem Ruf die Aktivität ihrer Nachbarzellen hemmen und damit kontrollieren, wann gerufen wird. Eine Störung der Aktivität beider Nervenzelltypen führte jeweils zu einer deutlichen Beeinträchtigung der Kommunikation.

„Ich bin ich und du bist du. Wenn ich rede, hörst du zu. Wenn du redest, bin ich still, weil ich dich verstehen will.“


Koordiniert miteinander zu kommunizieren ist bei Zebrafinken sehr wichtig, die Tiere leben in größeren Schwärmen zusammen. Hier eine Gruppe von Männchen.

Susanne Seltmann

Diese grundlegende Regel der Kommunikation lernen wir bereits im Kindergartenalter und halten daher die Fähigkeit, sich mit dem Gegenüber beim Sprechen abzuwechseln, für selbstverständlich.

Diese Leistung erfordert jedoch aktive Zurückhaltung und die Verzögerung einer Antwort, bis die andere Person mit dem Sprechen aufhört. In anderen Worten: Was man hört, beeinflusst nicht nur, was man sagt, sondern auch, wann man es sagt.

Andere Tiere haben ebenfalls die Fähigkeit, Lautäußerungen koordiniert auszutauschen, die zugrundeliegenden neuronalen Mechanismen hierfür waren jedoch bislang noch nicht bekannt. Sowohl Menschen als auch Singvögel besitzen spezialisierte neuronale Schaltkreise, die für das Hören verantwortliche Gehirnareale mit den Sprachzentren verbinden. Somit ist denkbar, dass es auch Parallelen bei der Sprachsteuerung gibt, welche die Kommunikation koordiniert und so ein gegenseitiges Unterbrechen vermeidet.

Jonathan Benichov und Daniela Vallentin vom Max-Planck-Institut für Ornithologie haben diese Theorie nun an Zebrafinken, kleinen australischen Singvögeln, untersucht. Den arttypischen Gesang lernen nur die Männchen, allerdings nutzen sowohl Männchen als auch Weibchen einfache, angeborene Rufe um sich in der Gruppe zu verständigen. Dieses Verhalten konnten die Wissenschaftler*innen nutzten, um die neuronalen Grundlagen der Sprachsteuerung zu erforschen.

Bei Singvögeln ist vor allem eine Gehirnregion namens HVC für das Erlernen und die Produktion von Lautäußerungen wichtig. „Wir haben daher vermutet, dass wir in diesem sogenannten Gesangskontrollzentrum nach der Erklärung dafür suchen müssen, wie das abwechselnde Rufen koordiniert wird“, sagt Jonathan Benichov, Erstautor der Studie. So agiert diese Gehirnregion zum Beispiel wie ein Metronom, um das Tempo der aufwändigen Balzgesänge der Männchen zu kontrollieren.

Benichov und Vallentin konnten nun nachweisen, dass die Neuronen in dieser Gehirnregion auch eine wichtige Rolle spielen bei der zeitlichen Koordination der für das soziale Zusammenleben wichtigen angeborenen Rufe. In diesem Fall kann man sich die Gehirnregion in etwa wie eine Ampel vorstellen, die festlegt, wann gerufen wird und wann damit gewartet werden muss.

Mit Hilfe winziger Elektroden, etwa 50 Mal dünner als ein menschliches Haar, sowie am Kopf angebrachter Miniatursender konnten die Wissenschaftler*innen die Aktivität einzelner an diesem Prozess beteiligter Nervenzellen messen, ohne das natürliche Verhalten der Tiere zu beeinflussen. So konnten Vorgänge im Gehirn der sich in der Gruppe frei bewegenden Tiere während der Kommunikation mit echten Partnern sowie auch die Reaktion auf vorgespielte Rufe anderer Artgenossen aufgezeichnet und ausgewertet werden.

Einige Nervenzellen wurden bereits wenige Millisekunden vor der eigentlichen Lautäußerung eines Tieres aktiv, ein Hinweis dafür, dass diese Neuronen am Auslösen der Rufe beteiligt waren. Darüber hinaus fanden die Forscher*innen andere Nervenzelltypen, die ihre Aktivität schon früher als die anderen Zellen vor der Lautäußerung steigerten.

„Deshalb haben wir auch diesen anderen Zelltyp untersucht, dessen Aufgabe es ist, Nachbarzellen ruhigzustellen“, erklärt Daniela Vallentin, Leiterin der Forschungsgruppe “Neuronale Grundlagen vokaler Kommunikation“.

Dabei stellte sich heraus, dass diese hemmenden Zellen ihre Signale bereits vor den Neuronen, die die Rufe letztendlich auslösen, senden. Sie könnten somit also kontrollieren, wann genau das rufauslösende Signal gesendet wird und das Tier zu rufen beginnt; beziehungsweise beginnt, auf Rufe zu reagieren.

Um diese Annahme zu überprüfen, wurden die Signale dieser hemmenden Zellen von den Wissenschaftler*innen chemisch blockiert. Die für das Auslösen der Rufe verantwortlichen Nachbarzellen produzierten daraufhin früher stärkere Signale, was zu einer ungewöhnlich schnellen Reaktion dieser Vögel auf ihre Partner und sogar zum unbeabsichtigten „Dazwischen-Zwitschern“ führte.

Wissenschaftliche Ansprechpartner:

Dr. Daniela Vallentin
Leiterin Forschungsgruppe “Neuronale Grundlagen vokaler Kommunikation“
Max-Planck-Institut für Ornithologie
E-mail: daniela.vallentin@orn.mpg.de

Dr. Jonathan Benichov
Forschungsgruppe “Neuronale Grundlagen vokaler Kommunikation“
Max-Planck-Institut für Ornithologie
E-mail: jbenichov@orn.mpg.de

Originalpublikation:

Jonathan I. Benichov, Daniela Vallentin (2020). Inhibition within a premotor circuit controls the timing of vocal turn-taking in zebra finches. Nature Communications, veröffentlicht am 10.01.2020 (DOI: 10.1038/s41467-019-13938-0)

Dr. Sabine Spehn | Max-Planck-Institut für Ornithologie
Weitere Informationen:
http://www.orn.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Serotonin die Kommunikation im Gehirn ausbalanciert
07.04.2020 | Ruhr-Universität Bochum

nachricht Winzige Meeresbewohner als Schlüssel für globale Kreisläufe
07.04.2020 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Belle II liefert erste Ergebnisse: Auf der Suche nach dem Z‘-Boson

Vor ziemlich genau einem Jahr ist das Belle II-Experiment angelaufen. Jetzt veröffentlicht das renommierte Journal Physical Review Letters die ersten Resultate des Detektors. Die Arbeit befasst sich mit einem neuen Teilchen im Zusammenhang mit der Dunklen Materie, die nach heutigem Kenntnisstand etwa 25 Prozent des Universums ausmacht.

Seit etwa einem Jahr nimmt das Belle II-Experiment Daten für physikalische Messungen. Sowohl der Elektron-Positron-Beschleuniger SuperKEKB als auch der...

Im Focus: Belle II yields the first results: In search of the Z′ boson

The Belle II experiment has been collecting data from physical measurements for about one year. After several years of rebuilding work, both the SuperKEKB electron–positron accelerator and the Belle II detector have been improved compared with their predecessors in order to achieve a 40-fold higher data rate.

Scientists at 12 institutes in Germany are involved in constructing and operating the detector, developing evaluation algorithms, and analyzing the data.

Im Focus: Wenn Ionen an ihrem Käfig rütteln

In vielen Bereichen spielen „Elektrolyte“ eine wichtige Rolle: Sie sind bei der Speicherung von Energie in unserem Körper wie auch in Batterien von großer Bedeutung. Um Energie freizusetzen, müssen sich Ionen – geladene Atome – in einer Flüssigkeit, wie bspw. Wasser, bewegen. Bisher war jedoch der präzise Mechanismus, wie genau sie sich durch die Atome und Moleküle der Elektrolyt-Flüssigkeit bewegen, weitgehend unverstanden. Wissenschaftler*innen des Max-Planck-Instituts für Polymerforschung haben nun gezeigt, dass der durch die Bewegung von Ionen bestimmte elektrische Widerstand einer Elektrolyt-Flüssigkeit sich auf mikroskopische Schwingungen dieser gelösten Ionen zurückführen lässt.

Kochsalz wird in der Chemie auch als Natriumchlorid bezeichnet. Löst man Kochsalz in Wasser lösen sich Natrium und Chlorid als positiv bzw. negativ geladene...

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Den Regen für Hydrovoltaik nutzen

Wassertropfen, die auf Oberflächen fallen oder über sie gleiten, können Spuren elektrischer Ladung hinterlassen, so dass sich die Tropfen selbst aufladen. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben dieses Phänomen, das uns auch in unserem Alltag begleitet, nun detailliert untersucht. Sie entwickelten eine Methode zur Quantifizierung der Ladungserzeugung und entwickelten zusätzlich ein theoretisches Modell zum besseren Verständnis. Nach Ansicht der Wissenschaftler könnte der beobachtete Effekt eine Möglichkeit zur Energieerzeugung und ein wichtiger Baustein zum Verständnis der Reibungselektrizität sein.

Wassertropfen, die über nicht leitende Oberflächen gleiten, sind überall in unserem Leben zu finden: Vom Tropfen einer Kaffeemaschine über eine Dusche bis hin...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Belle II liefert erste Ergebnisse: Auf der Suche nach dem Z‘-Boson

07.04.2020 | Physik Astronomie

Festkörperphysik: Vorhersage der Quantenphysik experimentell nachgewiesen

07.04.2020 | Physik Astronomie

Wie Serotonin die Kommunikation im Gehirn ausbalanciert

07.04.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics