Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was ist wichtig?

09.08.2019

Ausbildung der 3D-Struktur und spezifische Wechselwirkung zwischen Genen und Enhancern stellen unabhängige Ebenen der Genregulation dar

Aufgrund von Erkenntnissen bei der Untersuchung grundlegender Mechanismen der Genregulation und menschlicher Erbkrankheiten gingen Forschende bisher davon aus, dass die dreidimensionale Struktur der DNA für die Regulation von Genen essentiell ist.


Auswirkung von Inversionen auf die Genexpression: (A) Aktivitätsmuster von Sox9 und Kcnj2 im gesunden Mausembryo. (B) Inversion verursacht bei Kcnj2 ein ähnliches Expressionsmuster wie bei Sox9.

D. Ibrahim / Max-Planck-Institut für molekulare Genetik

Durch Entfernung und Verlagerung von Bindungsstellen für CTCF, einen der Hauptakteure für die 3D-Faltung des Genoms, hat ein Team um Daniel Ibrahim und Stefan Mundlos am Max-Planck-Institut für molekulare Genetik diesen Einfluss jetzt gezielt untersucht.

Durch Entfernung der CTCF-Bindungsstellen verringerte sich die Genauigkeit, größere Änderungen der Genexpression ergaben sich aber nicht. Eine Fehlexpression konnte jedoch durch das „Umleiten“ regulatorischer Aktivität durch Inversionen oder Verlegung von CTCF-Bindungsstellen ausgelöst werden.

In der aktuellen Ausgabe von Nature Genetics beschreiben die Forschenden, dass die räumliche Anordnung von Genen und ihren Regulatoren und die spezifische Wechselwirkung zwischen Regulatoren und Genen zwei voneinander unabhängige Ebenen der Genregulation darstellen. Diese stabilisieren sich gegenseitig, sind aber nicht voneinander abhängig.

Die DNA von Säugetieren einschließlich des Menschen faltet sich im Inneren des Zellkerns zu dreidimensionalen Funktionseinheiten, den sogenannten Topologically Associating Domains (TADs). Für die Bildung und Aufrechterhaltung dieser TADs ist unter anderem das Protein CTCF verantwortlich. Es bindet an spezifische Sequenzabschnitte innerhalb des DNA-Strangs, wodurch dieser Schlaufen ausbildet, aus denen die TADs geformt werden.

In einer TAD befinden sich meist ein oder mehrere Gene und deren regulatorische Elemente, die sogenannten Enhancer. Dies sind Abschnitte im Genom, über die die Aktivität („Expression“) des zugehörigen Gens präzise gesteuert werden kann.

In den letzten Jahren haben Wissenschaftlerinnen und Wissenschaftler um Daniel Ibrahim und Stefan Mundlos vom Berliner Max-Planck-Institut für molekulare Genetik (MPIMG) den Einfluss von krankheitsverursachenden Mutationen auf die Ausbildung der TADs untersucht. Dabei konnten sie zeigen, dass Enhancer durch die räumliche Anordnung der TADs in die unmittelbare Nähe des Gens gelangen, welches sie regulieren.

Die Forschenden vermuteten daher, dass die richtige Ausbildung einer TAD wesentlich für die korrekte Expression des enthaltenen Gens ist. Bestärkt wurde diese Interpretation durch die Untersuchung von Duplikationen (Verdopplungen) und Deletionen (Wegfall) unterschiedlich großer Genomabschnitte, die beim Menschen zu Fehlbildungen und angeborenen Erkrankungen führen.

Die Duplikationen verursachten die Ausbildung neuartiger TADs, in denen Gene aus einer TAD mit den Enhancern einer anderen TAD kombiniert wurden, während Deletionen zu einer Fusion vorhandener TADs führten. Als Ergebnis der Umlagerungen gerieten Gene unter die Kontrolle von Enhancern, die zuvor ein anderes Gen reguliert hatten, was letztlich zu Fehlexpression und Krankheiten führte.

Systematische Studie zur Aufklärung scheinbar widersprüchlicher Forschungsergebnisse

Neuere Ergebnisse von anderen Forschungsgruppen wiesen allerdings darauf hin, dass die Struktur der TADs vielleicht doch nicht so entscheidend für die Genregulation sein könnte, wie bislang angenommen. Um diesen scheinbaren Widerspruch aufzuklären, führten die Wissenschaftlerinnen und Wissenschaftler um Ibrahim und Mundlos eine systematische Studie durch, in der sie die Funktion der TADs und des Faktors CTCF genauer untersuchten. Die Forschenden konzentrierten sich auf die bereits gut untersuchte Sox9-Region, in der sich zwei große TADs befinden.

Eine enthält das Sox9-Gen und seine Enhancer, die andere das Kcnj2-Gen und dessen Enhancer. Die Grenze zwischen den TADs besteht aus vier Bindungsstellen für CTCF, weitere Bindungsstellen befinden sich innerhalb der Sox9-TAD und der Kcnj2-TAD. In einer Reihe von Experimenten wurden zunächst die Bindungsstellen an der Grenze zwischen den TADs entfernt, wodurch jedoch die dreidimensionale Struktur im Wesentlichen erhalten blieb.

Erst nachdem zusätzlich die CTCF-Bindungsstellen innerhalb der TADs entfernt worden waren, löste sich die Struktur der Sox9-Region auf und die zwei TADs fusionierten zu einer. „Wir konnten zeigen, dass die Struktur einer TAD nicht nur über ihre Grenzen definiert wird“, erklärt Ibrahim. "Wie meistens in der Biologie ist nicht nur ein Faktor für die Funktion oder den Ausfall des Systems verantwortlich. Wir haben es vielmehr mit einem redundanten System zu tun, mit dem sichergestellt werden soll, dass einzelne Ausfälle, zum Beispiel durch Mutationen, nicht zu einem kompletten Funktionsverlust führen.“

Überraschenderweise führten der Verlust der TAD-Grenze und sogar die Fusion der beiden TADs aber nicht zu einer wesentlichen Veränderung der Genexpression. Es fanden sich aber geringe Veränderungen in Genexpression und der Genauigkeit, mit der die Gene aktiviert wurden.

Wenn jedoch der Verlust von CTCF zu einer Fusion zweier TADs führt, wie es ähnlich auch bei den oben erwähnten Deletionen geschah, warum werden dann in einem Fall Gene fehlexprimiert und im anderen nicht? Um die Auswirkungen von genomischen Umlagerungen (Rearrangements) auf die Bildung von TADs und die Expression von Genen weiter zu untersuchen, entwickelten Ibrahim und Mundlos eine Reihe von Experimenten, in denen sie unterschiedlich große Sequenzabschnitte aus der DNA herausschnitten und in umgekehrter Richtung wieder einsetzten (Inversionen).

Dadurch wurden die CTCF-Bindungsstellen im Grenzbereich neu positioniert und ihre Ausrichtung geändert, was zu massiven Auswirkungen auf die Bildung der TADs und die Genexpression führte. Die Drehung von CTCF-Bindungsstellen und damit die Änderung ihrer Ausrichtung bewirkte, dass Sox9-Enhancer das benachbarte Kcnj2-Gen aktivieren und damit Krankheiten verursachen konnten Durch ein Verschieben der Grenze konnte Sox9 von seinen Enhancern getrennt und entsprechend nicht mehr aktiviert werden.

Durch das systematische Design ihrer Experimente konnte das Team um Ibrahim und Mundlos die unterschiedlichen Funktionen der CTCF-Bindungsstellen zwischen und innerhalb der TADs klar voneinander abgrenzen. Eine intakte TAD-Grenze war immer in der Lage, einzelne Funktionsbereiche voneinander zu trennen. Innerhalb der TADs hatten unterschiedliche Strukturveränderungen jedoch auch unterschiedliche Auswirkungen auf das Zusammenspiel von Enhancern und Genen.

„Tatsächlich ist die Spezifität der Enhancer für ihre Zielgene deutlich höher, als wir es bisher angenommen hatten“, berichtet Mundlos. „Wenn ihre Position im Genom erhalten bleibt, scheinen die Enhancer auch ohne den durch die TAD definierten Aktionsradius vor allem „ihre“ Gene zu aktivieren. Erst wenn sich die Bedingungen für eine Interaktion zwischen Gen und Enhancer verschlechtern, wie es zum Beispiel durch das Umdrehen von Genomabschnitten oder die Bildung neuer TADs der Fall ist, werden die Enhancer ihrem Gen „untreu“ und suchen sich andere Partner.“

Unabhängige Ebenen der Genregulation

Die Ergebnisse des Berliner Teams weisen darauf hin, dass die räumliche Trennung durch TADs und die spezifische Wechselwirkung zwischen Enhancer und Gen zwei voneinander unabhängige Ebenen der Genregulation darstellen. Sie stabilisieren sich gegenseitig, sind aber nicht voneinander abhängig. Außerdem erklären sie den scheinbaren Widerspruch, dass die Entfernung von CTCF bzw. seiner Bindungsstellen nur geringe Auswirkungen auf die Genregulation hat, während bei angeborenen Erkrankungen, die mit einer Veränderung der TAD-Struktur einhergehen, dramatische Änderungen in der Regulation einzelner Gene beobachtet werden können.

“Dies zeigt auch, wie wichtig systematische Untersuchungen und unterschiedliche Versuchsansätze für die Aufklärung von grundlegenden Sachverhalten sind“, so Ibrahim. „Mit den Ergebnissen der Einzelexperimente hätten wir zwei Aufsätze mit sich widersprechenden Schlussfolgerungen schreiben können. Erst durch die Zusammenführung der Ergebnisse und die Durchführung zusätzlicher Studien war es möglich zu verstehen, was diese gegensätzlichen Ergebnisse bedeuten.“

Hilfe bei der Interpretation von genomischen Veränderungen beim Menschen

Diese Ergebnisse haben direkte Auswirkungen auf die Diagnose und Interpretation von krankheitsverursachenden Mutationen beim Menschen. „Die Erkenntnisse helfen uns dabei vorhersagen, welche Auswirkungen eine Mutation im Genom haben und welche Krankheiten dies verursachen könnte“, erklärt Mundlos, der neben seiner Tätigkeit am MPIMG auch Leiter des Instituts für Medizinische Genetik und Humangenetik an der Charité – Universitätsmedizin Berlin ist.

„Bei vielen Mutationen, die wir bei unseren Patientinnen und Patienten sehen, handelt es sich nicht um kleine Veränderungen des Genoms, sondern um große Verlagerungen von DNA-Abschnitten, die zu Änderungen der 3D-Struktur und Unterbrechungen der Wechselwirkung zwischen Genen und Enhancern führen können. Die jetzige Studie trägt wesentlich zu unserem Verständnis dieser Veränderungen bei.“

Wissenschaftliche Ansprechpartner:

Prof. Dr. Stefan Mundlos
Max-Planck-Institut für molekulare Genetik
Tel.: +49 30 8413-1263-1449
Email: mundlos@molgen.mpg.de

Originalpublikation:

Despang A, Schöpflin R, Franke M, Ali S, Jerković I, Paliou C, Chan WL, Timmermann B, Wittler L, Vingron M, Mundlos S, Ibrahim DM.
Functional dissection of the Sox9-Kcnj2 locus identifies nonessential and instructive roles of TAD architecture.
Nat Genet. 2019 Aug;51(8):1263-1271. doi: 10.1038/s41588-019-0466-z. Epub 2019 Jul 29.

Weitere Informationen:

http://www.molgen.mpg.de/Development-and-Disease Webseite der Forschungsgruppe Entwicklung & Krankheit

Dr. Patricia Marquardt | Max-Planck-Institut für molekulare Genetik

Weitere Berichte zu: CTCF Deletionen Fusion Genetik Genexpression Genom Genregulation Mutationen dna molekulare Genetik

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Metastasierung von Tumoren verhindern
23.08.2019 | Paul Scherrer Institut (PSI)

nachricht Neue Strategien in der Medikamentenentwicklung: Was unsere Zellen zur Therapie durch gezielten Proteinabbau benötigen
23.08.2019 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hamburger und Kieler Forschende beobachten spontanes Auftreten von Skyrmionen in atomar dünnen Kobaltfilmen

Seit ihrer experimentellen Entdeckung sind magnetische Skyrmionen – winzige magnetische Knoten – in den Fokus der Forschung gerückt. Wissenschaftlerinnen und Wissenschaftler aus Hamburg und Kiel konnten nun zeigen, dass sich einzelne magnetische Skyrmionen mit einem Durchmesser von nur wenigen Nanometern in magnetischen Metallfilmen auch ohne ein äußeres Magnetfeld stabilisieren lassen. Über ihre Entdeckung berichten sie in der Fachzeitschrift Nature Communications.

Die Existenz magnetischer Skyrmionen als teilchenartige Objekte ist bereits vor 30 Jahren von theoretischen Physikern vorhergesagt worden, konnte aber erst...

Im Focus: Hamburg and Kiel researchers observe spontaneous occurrence of skyrmions in atomically thin cobalt films

Since their experimental discovery, magnetic skyrmions - tiny magnetic knots - have moved into the focus of research. Scientists from Hamburg and Kiel have now been able to show that individual magnetic skyrmions with a diameter of only a few nanometres can be stabilised in magnetic metal films even without an external magnetic field. They report on their discovery in the journal Nature Communications.

The existence of magnetic skyrmions as particle-like objects was predicted 30 years ago by theoretical physicists, but could only be proven experimentally in...

Im Focus: Physicists create world's smallest engine

Theoretical physicists at Trinity College Dublin are among an international collaboration that has built the world's smallest engine - which, as a single calcium ion, is approximately ten billion times smaller than a car engine.

Work performed by Professor John Goold's QuSys group in Trinity's School of Physics describes the science behind this tiny motor.

Im Focus: Die verschränkte Zeit der Quantengravitation

Die Theorien der Quantenmechanik und der Gravitation sind dafür bekannt, trotz der Bemühungen unzähliger PhysikerInnen in den letzten 50 Jahren, miteinander inkompatibel zu sein. Vor kurzem ist es jedoch einem internationalen Forschungsteam von PhysikerInnen der Universität Wien, der Österreichischen Akademie der Wissenschaften sowie der Universität Queensland (AUS) und dem Stevens Institute of Technology (USA) gelungen, wichtige Bestandteile der beiden Theorien, die den Verlauf der Zeit beschreiben, zu verbinden. Sie fanden heraus, dass die zeitliche Abfolge von Ereignissen echte Quanteneigenschaften aufweisen kann.

Der allgemeinen Relativitätstheorie zufolge verlangsamt die Anwesenheit eines schweren Körpers die Zeit. Das bedeutet, dass eine Uhr in der Nähe eines schweren...

Im Focus: Quantencomputer sollen tragbar werden

Infineon Austria forscht gemeinsam mit der Universität Innsbruck, der ETH Zürich und Interactive Fully Electrical Vehicles SRL an konkreten Fragestellungen zum kommerziellen Einsatz von Quantencomputern. Mit neuen Innovationen im Design und in der Fertigung wollen die Partner aus Hochschulen und Industrie leistbare Bauelemente für Quantencomputer entwickeln.

Ionenfallen haben sich als sehr erfolgreiche Technologie für die Kontrolle und Manipulation von Quantenteilchen erwiesen. Sie bilden heute das Herzstück der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

GAIN 2019: Das größte Netzwerktreffen deutscher Wissenschaftlerinnen und Wissenschaftler startet in den USA

22.08.2019 | Veranstaltungen

Künstliche Intelligenz auf der MS Wissenschaft

22.08.2019 | Veranstaltungen

Informatik-Tagung vom 26. bis 30. August 2019 in Aachen

21.08.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

5G macht die Produktion smarter

23.08.2019 | Informationstechnologie

Wärmekraftmaschinen in der Mikrowelt

23.08.2019 | Physik Astronomie

Auf dem Prüfstand: Automatisierte Induktionsthermographie zur Oberflächenrissprüfung von Schmiedeteilen

23.08.2019 | Maschinenbau

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics