Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fehlersuche im Erbgut: Welche Mutationen wirklich krank machen

13.08.2019

Wissenschaftler*innen vom Berlin Institute of Health (BIH) und der Charité – Universitätsmedizin Berlin haben gemeinsam mit Kolleg*innen aus den USA die Steuerbereiche von 20 krankheitsrelevanten Genen gezielt verändert. Dadurch konnten sie diejenigen Veränderungen identifizieren, welche den größten Einfluss auf das Krankheitsgeschehen ausüben. Ihre Ergebnisse ermöglichen nun die Vorhersage, welche bei Patient*innen gefundenen Veränderungen im Erbgut wirklich verantwortlich für den Krankheitsverlauf sind und sich daher für eine zielgerichtete Therapie eignen. Die Forscher*innen haben ihre Ergebnisse soeben in der Fachzeitschrift Nature Communications veröffentlicht.

Viele Krankheiten entstehen, weil das Erbgut Fehler aufweist, so genannte Mutationen. Diese führen dazu, dass lebenswichtige Eiweißmoleküle nicht korrekt hergestellt werden: Manchmal sind die Moleküle selbst so verändert, dass sie ihre Funktion nicht mehr ausüben können.


Die Abbildung veranschaulicht das Ablesen eines Genes durch RNA Polymerase II und die Bedeutung von Steuerelementen (Promoter- und Enhancer). Mutationen (Stern) beeinflussen die Bindung verschiedener

© Martin Kircher

Häufiger jedoch führen Veränderungen in den Steuerbereichen der Gene (regulatorische Sequenzen, auch Promotoren und Enhancer genannt) dazu, dass die falsche Menge der Eiweiße hergestellt wird.

Entweder produziert die Zelle viel zu viel oder viel zu wenig oder gar kein Eiweiß mehr. „Das führt zum Beispiel zu Krebs, wenn ein Eiweiß, das die Zellteilung ankurbelt, in zu großer Menge hergestellt wird“, erklärt Martin Kircher, Leiter der BIH Nachwuchsgruppe Computational Genome Biology und Erstautor der Veröffentlichung.

Doch gerade in Krebszellen treten häufig viele Mutationen auf, von denen manche nichts bewirken, während andere die Krankheit tatsächlich verursachen oder antreiben, indem sie die Produktionsmenge eines Eiweißes beeinflussen. Bevor Ärzt*innen also eine Therapie einleiten, die sich zielgerichtet gegen die Auswirkungen bestimmter Mutationen richtet, sollten sie wissen, wie wichtig diese für das Krankheitsgeschehen ist.


Um hier zu helfen, nahmen sich die Wissenschaftler*innen um Kircher Steuerbereiche 20 krankheitsrelevanter Gene vor und veränderten diese Baustein für Baustein, also Base für Base der DNA. Für diesen Zweck entwickelten sie eine Methode, mit der die Veränderungen in hohem Durchsatz erzeugt und parallel getestet werden konnten.

Sie überprüften in der Zellkultur, wie sich die jeweilige Veränderung auf die Eiweißproduktion auswirkte. „Etwa 85% der Veränderungen haben keinen messbaren Effekt, von den verbleibenden 15% reduzieren rund zwei Drittel die Menge des produzierten Eiweißes“, berichtet Kircher. Und es hängt stark von der individuellen Mutation und dem untersuchten Steuerbereich selbst ab, wie intensiv sie das Geschehen in der Zelle beeinflusst: „Wird eine Base gegen eine andere ausgetauscht, hat das meist weniger Einfluss als ein kompletter Wegfall.“

Die untersuchten Steuerelemente stammen von Genen, die bei Patientinnen und Patienten mit Krebs, Herzinsuffizienz, erblich bedingtem hohem Cholesterinspiegel oder verschiedenen seltenen Erkrankungen verändert sind. Die Ergebnisse der insgesamt mehr als 30.000 Mutationsanalysen haben die Forscher*innen für jeden frei verfügbar ins Internet gestellt.

Martin Kircher hofft nun, dass dieser Datenschatz auch genutzt wird: „Es wäre toll, wenn Ärzte oder Ärztinnen, die bei ihren Patientinnen oder Patienten das Erbgut analysiert haben, in unserer Datenbank nachschauen, welchen Effekt die gefundene Mutation aller Wahrscheinlichkeit nach hat und damit abschätzen können, ob sich die gefundene Veränderung im Patienten möglicherweise für eine zielgerichtete Therapie eignet.“

Ein solcher Aufwand für 20 von möglicherweise Hunderttausenden bis Millionen von Steuerbereichen weckt die Frage, ob sich die Vorhersage, welche Mutation welchen Effekt hervorruft nicht auch mit maschinellem Lernen oder künstlicher Intelligenz vorhersagen ließe. Es existieren bereits verschiedene Computerprogramme, die genau dies versuchen. Kircher und seine Kolleg*innen untersuchten deshalb auch, wie gut verschiedene Programme die in der Zellkultur beobachteten Veränderungen vorhersagen konnten.

„Das war leider sehr enttäuschend“, berichtet der Bioinformatiker, „die Vorhersagen stimmten selten mit unseren Beobachtungen überein. Manchmal prognostizierten sie sogar das genaue Gegenteil.“ Die Wissenschaftler hoffen nun, dass ihr Datenschatz möglicherweise auch dazu dienen kann, die Vorhersageprogramme zu verbessern.

Originalpublikation:

doi: 10.1038/s41467-019-11526-w. PMID: 31395865

Weitere Informationen:

https://www.bihealth.org/de/aktuell/?L=0&tx_news_pi1%5Bnews%5D=2287&tx_n...

Dr. Stefanie Seltmann | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.bihealth.org

Weitere Berichte zu: Baustein Eiweiß Erbgut Genome Biology Gesundheitsforschung Moleküle Mutation Zelle Zellkultur

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Experimentelles Tumormodell offenbart neue Ansätze für die Immuntherapie bei Glioblastom-Patienten
18.02.2020 | Universitätsmedizin Mannheim

nachricht Kleber für gebrochene Herzen
18.02.2020 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lichtpulse bewegen Spins von Atom zu Atom

Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzpulsspektroskopie (MBI) und des Max-Planck-Instituts für Mikrostrukturphysik haben durch die Kombination von Experiment und Theorie die Frage gelöst, wie Laserpulse die Magnetisierung durch ultraschnellen Elektronentransfer zwischen verschiedenen Atomen manipulieren können.

Wenige nanometerdünne Filme aus magnetischen Materialien sind ideale Testobjekte, um grundlegende Fragestellungen des Magnetismus zu untersuchen. Darüber...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Höhere Treibhausgasemissionen durch schnelles Auftauen des Permafrostes

18.02.2020 | Geowissenschaften

Supermagnete aus dem 3D-Drucker

18.02.2020 | Maschinenbau

Warum Lebewesen schrumpfen

18.02.2020 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics