Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einem alten Übergangsmetall neue Tricks beibringen: Chemiker aktivieren Palladium-Katalyse mit Licht

24.03.2020

Bei der Herstellung von Verbindungen haben Chemiker das Ziel, möglichst viele der Substanzen zu nutzen und Abfallprodukte zu vermeiden. Das dient dazu, industrielle Innovationen voranzutreiben und Medikamente zu entwickeln. In diesem Zusammenhang hat jetzt ein Forscherteam der Universität Münster einen neuen Ansatz zur sogenannten Allylfunktionalisierung entwickelt. Die Wissenschaftler nutzen eine auf Radikalchemie basierende Methode, um π-Allylpalladium-Komplexe herzustellen. Die Studie ist in der Fachzeitschrift „Nature Catalysis“ erschienen.

Bei der Herstellung von Verbindungen haben Chemikerinnen und Chemiker das grundlegende Ziel, möglichst viele der eingesetzten Substanzen zu nutzen und Abfallprodukte zu vermeiden. Durchbrüche bei der Suche nach solchen Strategien dienen unter anderem dazu, industrielle Innovationen voranzutreiben und Medikamente zu entwickeln.


Chemische Darstellung der neuen Methode, mit der die Forscher π-Allylpalladium-Komplexe durch Radikalchemie herstellen

Frank Glorius

In diesem Zusammenhang haben sogenannte allylische Substitutionsreaktionen durch Katalysatoren aus Übergangsmetallen bereits zu bedeutenden Fortschritten in der Wissenschaft geführt. Dabei bewirken die Katalysatoren, dass in einem Molekül ein Austausch einer Gruppe in allylischer Position, also in direkter Nähe zu einer Kohlenstoff-Kohlenstoff-Doppelbindung, stattfindet.

Insbesondere die sogenannte Allylfunktionalisierung durch einen Katalysator, der auf dem Übergangsmetall Palladium basiert, ist seit einigen Jahrzehnten zu einer gut etablierten Methode geworden, um Kohlenstoff-Kohlenstoff- oder Kohlenstoff-Heteroatom-Bindungen aufzubauen, die für die Herstellung von Naturstoffen und Arzneimitteln sowie die Materialwissenschaft nützlich sind.

Dennoch bestehen in der Praxis noch immer erhebliche Herausforderungen, vor allem hinsichtlich der Nachhaltigkeit der Stoffe und ihrer Fähigkeit, chemische Reaktionen einzugehen.

Ein Forscherteam unter der Leitung von Prof. Dr. Frank Glorius von der Westfälischen Wilhelms-Universität Münster (WWU) hat jetzt einen neuen Ansatz zur Allylfunktionalisierung entwickelt und mithilfe der sogenannten Radikalchemie π-Allylpalladium-Komplexe hergestellt. Die Studie ist in der Fachzeitschrift „Nature Catalysis“ erschienen.

Bereits zuvor hatten Chemiker verschiedene Methoden entwickelt, um π-Allylpalladium-Komplexe zu entwickeln. Diese Methoden erfordern jedoch in der Regel entweder Ausgangsmaterialien, die schon auf eine bestimmte Weise vorfunktionalisiert sind, oder spezielle Oxidationsmittel – was ihren Anwendungsbereich einschränkt.

„Dies ist das erste Mal, dass π-Allylpalladium-Komplexe mit einer auf Radikalchemie basierenden Strategie erzeugt werden. Wir hoffen, dass die Strategie schnell von der synthetischen Gemeinschaft übernommen und als ergänzende Methode eingesetzt wird, um eine Reihe weiterer verwandter Reaktionen zu ermöglichen“, betont Studienleiter Frank Glorius.

Die neue Methode funktioniert so: Ein kommerziell erhältlicher Palladium-Katalysator wird durch sichtbares Licht angeregt, woraufhin N-Hydroxyphthalimid-Ester, die von preiswerten und reichlich vorhandenen aliphatischen Carbonsäuren abgeleitet werden, mit Dienen verschmelzen – organisch-chemischen Verbindungen, die zwei Kohlenstoff-Kohlenstoff-Doppelbindungen enthalten.

Das hat zur Folge, dass π-Allylpalladium-Komplexe effizient erzeugt werden können. Es kommt zu einer sogenannten 1,4-Aminoalkylierung der Diene, was die Wissenschaftler an mehr als 60 Beispielen demonstrierten. Darüber hinaus konnten sie in ihrer Studie zeigen, dass ihre Strategie auch bei radikalischen Kaskadenreaktionen und bei der Modifizierung von Medikamenten und Naturstoffen angewendet werden kann.

„Dies ist eine Innovation in der Palladiumchemie. Wir haben diesem alten Übergangsmetall-Katalysator neue Tricks beigebracht. Zusätzlich wurden leicht verfügbare N-Hydroxyphthalimid-Ester als bifunktionelle Reagenzien eingesetzt, wodurch wir zwei Fliegen mit einer Klappe geschlagen haben“, sagt Dr. Huan-Ming Huang, Erstautor der Studie.

Förderung:

Die Studie erhielt finanzielle Unterstützung von der Alexander von Humboldt-Stiftung, der Europäischen Union über den „Marie Skłodowska Curie Grant“ und der Deutschen Forschungsgemeinschaft über den Sonderforschungsbereich SFB 858 und den Leibniz-Preis.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Frank Glorius (Westfälische Wilhelms-Universität Münster)
Tel: +49 251 8333248
glorius@uni-muenster.de

Originalpublikation:

H.-M. Huang et al. (2020): Catalytic radical generation of π-allylpalladium complexes. Nature Catalysis; DOI: 10.1038/s41929-020-0434-0

Weitere Informationen:

https://www.nature.com/articles/s41929-020-0434-0 Originalpublikation in “Nature Catalysis”
https://www.uni-muenster.de/Chemie.oc/glorius/ WWU-Forschergruppe Prof. Frank Glorius

Svenja Ronge | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Katalysatoren Licht Materialwissenschaft Palladium

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forschung gegen das Corona-Virus – Gewebemodelle für schnelle Wirkstofftests
08.04.2020 | Fraunhofer-Institut für Silicatforschung ISC

nachricht Mutation senkt Energieverschwendung bei Pflanzen
08.04.2020 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Technologien für Satelliten

Er kommt ohne Verkabelung aus und seine tragende Struktur ist gleichzeitig ein Akku: An einem derart raffiniert gebauten Kleinsatelliten arbeiten Forschungsteams aus Braunschweig und Würzburg. Für 2023 ist das Testen des Kleinsatelliten im Orbit geplant.

Manche Satelliten sind nur wenig größer als eine Milchtüte. Dieser Bautypus soll jetzt eine weiter vereinfachte Architektur bekommen und dadurch noch leichter...

Im Focus: The human body as an electrical conductor, a new method of wireless power transfer

Published by Marc Tudela, Laura Becerra-Fajardo, Aracelys García-Moreno, Jesus Minguillon and Antoni Ivorra, in Access, the journal of the Institute of Electrical and Electronics Engineers

The project Electronic AXONs: wireless microstimulators based on electronic rectification of epidermically applied currents (eAXON, 2017-2022), funded by a...

Im Focus: Belle II liefert erste Ergebnisse: Auf der Suche nach dem Z‘-Boson

Vor ziemlich genau einem Jahr ist das Belle II-Experiment angelaufen. Jetzt veröffentlicht das renommierte Journal Physical Review Letters die ersten Resultate des Detektors. Die Arbeit befasst sich mit einem neuen Teilchen im Zusammenhang mit der Dunklen Materie, die nach heutigem Kenntnisstand etwa 25 Prozent des Universums ausmacht.

Seit etwa einem Jahr nimmt das Belle II-Experiment Daten für physikalische Messungen. Sowohl der Elektron-Positron-Beschleuniger SuperKEKB als auch der...

Im Focus: Belle II yields the first results: In search of the Z′ boson

The Belle II experiment has been collecting data from physical measurements for about one year. After several years of rebuilding work, both the SuperKEKB electron–positron accelerator and the Belle II detector have been improved compared with their predecessors in order to achieve a 40-fold higher data rate.

Scientists at 12 institutes in Germany are involved in constructing and operating the detector, developing evaluation algorithms, and analyzing the data.

Im Focus: Wenn Ionen an ihrem Käfig rütteln

In vielen Bereichen spielen „Elektrolyte“ eine wichtige Rolle: Sie sind bei der Speicherung von Energie in unserem Körper wie auch in Batterien von großer Bedeutung. Um Energie freizusetzen, müssen sich Ionen – geladene Atome – in einer Flüssigkeit, wie bspw. Wasser, bewegen. Bisher war jedoch der präzise Mechanismus, wie genau sie sich durch die Atome und Moleküle der Elektrolyt-Flüssigkeit bewegen, weitgehend unverstanden. Wissenschaftler*innen des Max-Planck-Instituts für Polymerforschung haben nun gezeigt, dass der durch die Bewegung von Ionen bestimmte elektrische Widerstand einer Elektrolyt-Flüssigkeit sich auf mikroskopische Schwingungen dieser gelösten Ionen zurückführen lässt.

Kochsalz wird in der Chemie auch als Natriumchlorid bezeichnet. Löst man Kochsalz in Wasser lösen sich Natrium und Chlorid als positiv bzw. negativ geladene...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Flugplätze durch Virtual Reality unterstützen

08.04.2020 | Verkehr Logistik

Forschung gegen das Corona-Virus – Gewebemodelle für schnelle Wirkstofftests

08.04.2020 | Biowissenschaften Chemie

Kostengünstiges mobiles Beatmungsgerät entwickelt

08.04.2020 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics