Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biologisches Gefahrenpotenzial von Nanopartikeln untersucht

27.08.2019

Veröffentlichung in Scientific Reports

Kohlenstoff-Nanopartikel sind ein vielversprechendes Werkzeug für biomedizinische Anwendungen, etwa für den gezielten Wirkstofftransport in Zellen. Ein Team aus Physik, Medizin und Chemie der Heinrich-Heine-Universität Düsseldorf (HHU) hat nun untersucht, ob diese Partikel für den Organismus potenziell gefährlich sind, beziehungsweise wie Zellen sich der Teilchen wieder zu entledigen versuchen. Die Ergebnisse der interdisziplinären Studie wurden jetzt in der Zeitschrift Scientific Reports veröffentlicht.


CD34+-Stammzellen mit Kohlenstoff-Nanopartikel (magenta); in Blau sind die Zellkerne zu sehen. Die Forscher stellten fest, dass die Nanopartikel in den Lysosomen der Zelle eingeschlossen sind.

HHU / Stefan Fasbender

Unter Nanopartikeln versteht man solche Teilchen, die kleiner als fünf Nanometer sind – ein Nanometer entspricht einem millionstel Millimeter – und damit die Größe von Makromolekülen haben. So kleine Teilchen werden sehr gut in Körperzellen aufgenommen. Diese Eigenschaft hat zwei Aspekte. Zum einen können Nanopartikel damit gute Vehikel sein, um an sie geheftete Wirkstoffe gezielt in kranke Zellen zu transportieren.

Zum anderen können sie aber auch gesundheitliche Risiken bergen, die beispielsweise im Kontext mit Feinstaub diskutiert werden. Feinstaub entsteht unter anderem in Verbrennungsprozessen, ein Anteil davon ist als Nanopartikel einzuordnen. Diese extrem kleinen Teilchen können die „Blut-Luft-Schranke“ überwinden und so in den Körper eindringen: Die Bronchialschleimhaut in der Lunge filtert sie nicht heraus, sondern sie gelangen bis in die Lungenbläschen und von dort ins Blut.

HHU-Forscherinnen und -Forscher vom Institut für Experimentelle Festkörperphysik um Prof. Dr. Thomas Heinzel und von der Klinik für Hämatologie, Onkologie und Klinische Immunologie um Prof. Dr. Rainer Haas haben zusammen mit Arbeitsgruppen aus der Chemie nun untersucht, was passiert, wenn Körperzellen solche Nanopartikel aufnehmen.

Die Forscher nutzten Nanopartikel aus Graphen; dies ist eine spezielle Form des Kohlenstoffs, der aus zweidimensionalen Lagen von Kohlenstoff-Sechseckringen besteht. Diese brachten sie in spezielle Stammzellen des blutbildenden Systems ein, die sogenannte CD34+-Stammzellen. Diese Zellen sind aufgrund ihrer lebenslangen Teilungsfähigkeit besonders empfänglich für schädigende Umwelteinflüsse. Man geht davon aus, dass bei diesen Zellen eine Schädigung durch Nanopartikel – wenn überhaupt – stärker ausfällt als bei den robusteren anderen Zelltypen.

Das interdisziplinäre Düsseldorfer Forschungsteam konnte zeigen, dass die Kohlenstoff-Nanopartikel in die Zellen gelangen und dort in speziellen Organellen, den sogenannten Lysosomen, eingekapselt werden. Die Lysosomen dienen im Körper als eine Art Entsorgungseinheit, in denen Fremdkörper angesammelt und normalerweise dann mit Hilfe von Enzymen abgebaut werden. Einen solchen Abbauprozess beobachteten die Forscher allerdings über die Dauer der Experimente – einige Tage – nicht.

Beim Vergleich der aktiven Gene („Genexpression“) von Stammzellen mit und ohne Beigabe von Nanopartikeln ergab sich, dass lediglich eine von insgesamt 20.800 aufgezeichneten Expressionen verändert war; bei 1.171 weiteren Genexpressionen konnten darüber hinaus leichte Effekte festgestellt werden.

Prof. Heinzel zu den Ergebnissen: „Die Einkapslung der Nanopartikel in den Lysosomen sorgt dafür, dass diese Teilchen zumindest für einige Tage – solange unsere Untersuchungen dauerten – sicher verwahrt sind und die Zelle nicht schädigen können. Damit ist die Lebensfähigkeit der Zelle ohne wesentliche Änderung der Genexpression erhalten.“ Diese Erkenntnis ist wichtig, wenn man Nanopartikel als Fähren für Medikamente in die Zelle nutzen will. Langzeitaussagen, die etwa eine erhöhte Wahrscheinlichkeit für eine Entartung der Zellen in Richtung Krebsentstehungen feststellen können, sind in dem hier gewählten experimentellen Rahmen nicht möglich.

Die Forschungen sind in enger Kooperation von Mathematisch-Naturwissenschaftlicher und Medizinscher Fakultät mit dem Universitätsklinikum Düsseldorf erfolgt. Die Düsseldorf School of Oncology (Leitung: Prof. Dr. Sebastian Wesselborg) förderte dabei das Promotionsstipendium von Erstautor Stefan Fasbender. Dazu Prof. Haas: „Durch die räumliche Nähe von Klinik und Universität und deren enger inhaltlichen Verzahnung bietet die HHU ein besonders fruchtbares Umfeld für die Translationale Forschung, bei der Erkenntnisse und Expertise der Grundlagenforschung mit für die Behandlung relevanten Aspekten zusammenfließen.“

Originalpublikation:

Stefan Fasbender, Lisa Zimmermann, Ron-Patrick Cadeddu, Martina Luysberg, Bastian Moll, Christoph Janiak, Thomas Heinzel & Rainer Haas, The Low Toxicity of Graphene Quantum Dots is Reflected by Marginal Gene Expression Changes of Primary Human Hematopoietic Stem Cells, Scientific Reports (2019) 9:12028
DOI: 10.1038/s41598-019-48567-6

Weitere Informationen:

https://www.nature.com/articles/s41598-019-48567-6

Dr.rer.nat. Arne Claussen | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.hhu.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Immunologie - Rachenmandeln als Test-Labor
27.02.2020 | Ludwig-Maximilians-Universität München

nachricht Pestizide erhöhen Risiko für Tropenkrankheit Schistosomiasis / Belastete Gewässer fördern Zwischenwirt des Erregers
27.02.2020 | Helmholtz-Zentrum für Umweltforschung - UFZ

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler beleuchten aktuellen Stand der Anwendung des Maschinenlernens bei Forschung an aktiven Materialien

Verfahren des Maschinenlernens haben durch die Verfügbarkeit von enormen Datenmengen in den vergangenen Jahren einen großen Zuwachs an Anwendungen in vielen Gebieten erfahren: vom Klassifizieren von Objekten, über die Analyse von Zeitreihen bis hin zur Kontrolle von Computerspielen und Fahrzeugen. In einem aktuellen Review in der Zeitschrift „Nature Machine Intelligence“ beleuchten Autoren der Universitäten Leipzig und Göteborg den aktuellen Stand der Anwendung und Anwendungsmöglichkeiten des Maschinenlernens im Bereich der Forschung an aktiven Materialien.

Als aktive Materialien bezeichnet man Systeme, die durch die Umwandlung von Energie angetrieben werden. Bestes Beispiel für aktive Materialien sind biologische...

Im Focus: Computersimulationen stellen bildlich dar, wie DNA erkannt wird, um Zellen in Stammzellen umzuwandeln

Forscher des Hubrecht-Instituts (KNAW - Niederlande) und des Max-Planck-Instituts in Münster haben entdeckt, wie ein essentielles Protein bei der Umwandlung von normalen adulten humanen Zellen in Stammzellen zur Aktivierung der genomischen DNA beiträgt. Ihre Ergebnisse werden im „Biophysical Journal“ veröffentlicht.

Die Identität einer Zelle wird dadurch bestimmt, ob die DNA zu einem beliebigen Zeitpunkt „gelesen“ oder „nicht gelesen“ wird. Die Signalisierung in der Zelle,...

Im Focus: Bayreuther Hochdruck-Forscher entdecken vielversprechendes Material für Informationstechnologien

Forscher der Universität Bayreuth haben ein ungewöhnliches Material entdeckt: Bei einer Abkühlung auf zwei Grad Celsius ändern sich seine Kristallstruktur und seine elektronischen Eigenschaften abrupt und signifikant. In diesem neuen Zustand lassen sich die Abstände zwischen Eisenatomen mithilfe von Lichtstrahlen gezielt verändern. Daraus ergeben sich hochinteressante Anwendungsmöglichkeiten im Bereich der Informationstechnologien. In der Zeitschrift „Angewandte Chemie – International Edition“ stellen die Wissenschaftler ihre Entdeckung vor. Die neuen Erkenntnisse sind aus einer engen Zusammenarbeit mit Partnereinrichtungen in Augsburg, Dresden, Hamburg und Moskau hervorgegangen.

Bei dem ungewöhnlichen Material handelt es sich um ein Eisenoxid mit der Zusammensetzung Fe₅O₆. In einem Hochdrucklabor des Bayerischen Geoinstituts (BGI),...

Im Focus: Von China an den Südpol: Mit vereinten Kräften dem Rätsel der Neutrinomassen auf der Spur

Studie von Mainzer Physikern zeigt: Experimente der nächsten Generation versprechen Antworten auf eine der aktuellsten Fragen der Neutrinophysik

Eine der spannendsten Herausforderungen der modernen Physik ist die Ordnung oder Hierarchie der Neutrinomassen. Eine aktuelle Studie, an der Physiker des...

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

CLIMATE2020 – Weltweite Online-Klimakonferenz vom 23. bis 30. März 2020

26.02.2020 | Veranstaltungen

Automatisierung im Dienst des Menschen

25.02.2020 | Veranstaltungen

Genomforschung für den Artenschutz - Internationale Fachtagung in Frankfurt

25.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Riesiger 3D-Drucker soll tonnenschwere Getriebeteile aus Stahl fertigen

27.02.2020 | Maschinenbau

Immunologie - Rachenmandeln als Test-Labor

27.02.2020 | Biowissenschaften Chemie

Pestizide erhöhen Risiko für Tropenkrankheit Schistosomiasis / Belastete Gewässer fördern Zwischenwirt des Erregers

27.02.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics