Temperaturbeständige Leistungshalbleiter aus dem 3D-Drucker

In einem Labor der Professur Elektrische Energiewandlungssysteme und Antriebe der TU Chemnitz werden beim 3D-Druck von Gehäusen für leistungselektronische Bauelemente keramische und metallische Pasten genutzt, um die Bauteilgeometrie zu erzeugen.
Foto: Jacob Müller

Forscherinnen und Forschern der Fakultät für Elektrotechnik und Informationstechnik der TU Chemnitz gelang erstmals der 3D-Druck und das nachfolgende Sintern von Gehäusen für leistungselektronische Bauelemente.

Forscherinnen und Forschern der Professur Elektrische Energiewandlungssysteme und Antriebe an der Technischen Universität Chemnitz ist erstmals der 3D-Druck von Gehäusen für leistungselektronische Bauelemente gelungen, die etwa zur Ansteuerung elektrischer Maschinen dienen. Dabei werden während des Druckvorgangs Silziumcarbid-Chips an einer dafür vorgesehenen Stelle der Gehäuse positioniert.

Wie schon bei ihrem gedruckten Motor aus Eisen, Kupfer und Keramik, den die Professur erstmals 2018 auf der Hannover Messe präsentierte, kommen auch beim 3D-Druck der Gehäuse keramische und metallische Pasten zum Einsatz. „Diese werden nach dem Druckvorgang, zusammen – und das ist das Besondere daran – mit dem eingedruckten Chip gesintert“, sagt Prof. Dr. Ralf Werner, Inhaber der Professur Elektrische Energiewandlungssystem und Antriebe. Keramik diene dabei als Isolationsmaterial und Kupfer werde zur Kontaktierung der Gate-, Drain- und Source-Flächen der Feldeffekttransistoren verwendet. „Besonders anspruchsvoll war die Kontaktierung der Gate-Fläche, die im Normalfall weniger als einen Millimeter Kantenlänge aufweist“, fügt Prof. Dr. Thomas Basler, Leiter der Professur Leistungselektronik, hinzu, dessen Team das Projekt mit ersten Funktionstests an Prototypen unterstützte.

Nach den an der TU Chemnitz gedruckten keramisch isolierten Spulen, die bereits 2017 auf der Hannover Messe vorgestellt wurden, und dem gedruckten Motor stehen nun auch Antriebskomponenten zur Verfügung, die Temperaturen über 300 °C aushalten. „Der Wunsch nach einer temperaturbeständigeren Leistungselektronik war naheliegend, denn die Gehäuse für leistungselektronische Bauelemente werden traditionell möglichst nahe am Motor installiert und sollten daher über eine ebenso große Temperaturbeständigkeit verfügen“, so Prof. Werner.

Ein Forschungsteam um Johannes Rudolph, der das 3D-Druckverfahren mitentwickelt hat, stellte in den vergangenen Monaten mehrere Prototypen der additiv paketierten Leistungshalbleiter auf Siliziumcarbid-Basis her. „Neben der hervorragenden Temperaturbeständigkeit bietet diese Technologie noch weitere Vorteile“, so Rudolph. Zum einen versprechen sich die Wissenschaftlerinnen und Wissenschaftler durch die beidseitige, flächige und lotfreie Kontaktierung der Chips eine längere Lebensdauer hinsichtlich der Anzahl der Lastwechselzyklen sowie eine bessere Kühlung und damit Ausnutzbarkeit der Chips. „Aufgrund der im Vergleich zu Kunststoffen höheren thermischen Leitfähigkeit der Keramik und der für den 3D-Druck üblichen Designfreiheit lassen sich leicht speziell angepasste Kühlgeometrien im Gehäuse und an dessen Oberfläche realisieren“, versichert Rudolph. Zudem sei so zur Herstellung eines leistungselektronischen Bauelements nach der Produktion der Siliziumcarbid-Chips selbst nur ein einziger Arbeitsschritt notwendig.

Johannes Rudolph und sein Team wollen das Verfahren zur Marktreife weiterentwickeln. Potentielle Kooperationspartner sind willkommen daran mitzuwirken, beispielsweise im Rahmen gemeinsamer Forschungsprojekte.

Wissenschaftliche Ansprechpartner:

Johannes Rudolph, Telefon 0371 531-38938, E-Mail johannes.rudolph@etit.tu-chemnitz.de

Weitere Informationen:

https://www.tu-chemnitz.de/etit/ema/AMMM/index.php – Homepage zum Thema „3D-Multimaterialdruck“

http://www.tu-chemnitz.de/

Media Contact

Dipl.-Ing. Mario Steinebach Pressestelle und Crossmedia-Redaktion
Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Mit einem Klick erfahren, wo es im Wald brennt

Satellitengestützte Erkennung von Waldbränden im Waldmonitor Deutschland jetzt online. Seit heute kann jedeR BürgerInnen verfolgen, ob und wo es in Deutschlands Wäldern brennt. Der Waldmonitor Deutschland [http://Waldmonitor-deutschland.de] zeigt jetzt frei…

Komplexe Muster: Eine Brücke vom Großen ins Kleine schlagen

Ein neue Theorie ermöglicht die Simulation komplexer Musterbildung in biologischen Systemen über unterschiedliche räumliche und zeitliche Skalen. Für viele lebenswichtige Prozesse wie Zellteilung, Zellmigration oder die Entwicklung von Organen ist…

Neuartige Membran zeigt hohe Filterleistung

Partikel aus alltäglichen Wandfarben können lebende Organismen schädigen. Für Wand- und Deckenanstriche werden in Haushalten meistens Dispersionsfarben verwendet. Ein interdisziplinäres Forschungsteam der Universität Bayreuth hat jetzt zwei typische Dispersionsfarben auf…

Partner & Förderer