Ein- und Auswanderung von Gast-Atomen in Speicherstruktur direkt beobachtet

From the measurement data, the team was able to determine that the xenon atoms first accumulate on the inner walls of the pores (state 1), before they fill them up (state 2). The X-ray beam penetrates the sample from below.
Credit: M. Künsting/HZB

Energiematerialien …

Batterieelektroden, Gas-Speicher und einige heterogene Katalysatormaterialien besitzen winzige Poren, die Raum für Atome, Ionen oder Moleküle bieten. Wie genau diese „Gäste“ in die Poren einwandern, ist entscheidend für die Funktion solcher Energiematerialien, lässt sich aber meist nur indirekt beobachten. Nun hat ein Team mit dem HZB-ASAXS Instrument an der PTB Röntgen-Beamline von BESSY II mithilfe zweier Röntgenmethoden den Prozess der Einlagerung von Atomen in ein nanoporöses Modellsystem direkt beobachtet. Die Arbeit legt Grundlagen für neue Einblicke in Energiematerialien.

Batteriematerialien, neuartige Katalysatoren und Speichermaterialien für Wasserstoff haben eine Gemeinsamkeit: Sie besitzen häufig eine Struktur aus winzigen Poren im Nanometerbereich. Diese Poren bieten Platz für Gastatome, Ionen oder Moleküle, dabei können sich ihre Eigenschaften durch den Einschluss in die Poren dramatisch verändern. Für innovative Energiematerialien sind die Prozesse in den Poren oft entscheidend, aber erst im Ansatz verstanden.

Welche Struktur bilden Fremdatome in den Poren?

Insbesondere ließ sich bisher zwar die Porenstruktur der Trägermaterialien durch gängige Röntgenstreumethoden gut charakterisieren. Dabei blieb jedoch verborgen, wie sich die Fremdatome genau einlagerten, und welche Morphologie oder Struktur sie dabei bildeten. Um das zu klären, hat ein Team aus dem HZB zusammen mit Kollegen der Uni Hamburg, der PTB und der Humboldt-Universität zu Berlin an der PTB-Röntgen-Beamline von BESSY II erstmals zwei verschiedene Röntgenmethoden mit einem Gasadsorbtionsprozess kombiniert. Damit gelang es ihnen, gezielt nur die Nanostruktur des „Füllmaterials“ sichtbar zu machen, und zwar sowohl während der Auffüllung der Poren als auch während ihrer Entleerung.

Modellsystem: Nanoporöses Silizium mit Xenon

Sie testeten das Verfahren an einem Modellsystem aus nanoporösem Silizium. In einer speziell angefertigten Physisorptions-Zelle unter kontrollierten Bedingungen (Temperatur, Druck) wurde das Edelgas Xenon mit der Siliziumprobe in Kontakt gebracht. Die Probe untersuchten sie simultan mit Anomaler Röntgen-Kleinwinkelstreuung (ASAXS) und Röntgenspektroskopie (XANES): Dabei wird die Energie des Röntgenstrahls in der Nähe der Röntgenabsorptionskante der Xenon-Atome variiert.

Zunächst: Auskleidung der Innenwände

Sie konnten so Schritt für Schritt erfassen, wie Xenon in die Poren einwandert, und beobachten, dass die Atome zunächst eine einatomare Lage an den inneren Oberflächen der Poren bilden. Danach werden weitere Lagen angebaut, bis die Poren gefüllt sind. Dabei lassen sich Füllung und Entleerung strukturell unterscheiden.

Mathematische Ermittlung

„Mit konventioneller Röntgenstreuung (SAXS) sieht man nur das poröse Material und die gefüllten Bereiche gemeinsam, sodass die Beiträge der Füllstoffe bei hoher Füllung kaum sichtbar sind“, sagt Eike Gericke, Erstautor der Studie, der über die Röntgenverfahren promoviert. „Das haben wir verändert, indem wir ASAXS genutzt und an der Röntgenabsorptionskante von Xenon gemessen haben. An dieser Kante ändern sich die Wechselwirkungen zwischen Xenon und dem Röntgenstrahl, so dass wir das Füllmaterial Xenon mathematisch extrahieren können.“

Neues Werkzeug für die Entwicklung von Energiematerialien

„Wir haben damit erstmals direkten Zugang zu einem Bereich, über den man zuvor nur Vermutungen anstellen konnte“, erläutert Dr. Armin Hoell, korrespondierender Autor der Arbeit. „Die Anwendung der Kombination dieser beiden Röntgenmethoden auf den Prozess macht es nun möglich, das Verhalten von eingeschlossener Materie in Nanostrukturen experimentell zu beobachten. Das ist ein neues, mächtiges Werkzeug, um auch tiefere Einblicke in Batterieelektroden, Katalysatoren oder Wasserstoff-Speichermaterialien zu gewinnen.“

Wissenschaftliche Ansprechpartner:

Dr. Armin Hoell
Physiker, HZB, Abteilung Struktur und Dynamik von Energiematerialien,
(030) 8062 – 14678
E-Mail: armin.hiell@helmholtz-berlin.de

Originalpublikation:

Journal of Physical Chemistry Letters (Open Access, 2021): “Direct Observation of the Xenon Physisorption Process in Mesopores by Combining In Situ Anomalous Small-Angle X-ray Scattering and X-ray Absorption Spectroscopy”

Eike Gericke, Dirk Wallacher, Robert Wendt, Giorgia Greco, Michael Krumrey, Simone Raoux, Armin Hoell, and Simone Mascotto
DOI: 10.1021/acs.jpclett.1c00557

http://www.helmholtz-berlin.de/

Media Contact

Dr. Antonia Rötger Kommunikation
Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

KI-basierte Software in der Mammographie

Eine neue Software unterstützt Medizinerinnen und Mediziner, Brustkrebs im frühen Stadium zu entdecken. // Die KI-basierte Mammographie steht allen Patientinnen zur Verfügung und erhöht ihre Überlebenschance. Am Universitätsklinikum Carl Gustav…

Mit integriertem Licht zu den Computern der Zukunft

Während Computerchips Jahr für Jahr kleiner und schneller werden, bleibt bisher eine Herausforderung ungelöst: Das Zusammenbringen von Elektronik und Photonik auf einem einzigen Chip. Zwar gibt es Bauteile wie MikroLEDs…

Antibiotika: Gleicher Angriffspunkt – unterschiedliche Wirkung

Neue antimikrobielle Strategien sind dringend erforderlich, um Krankheitserreger einzudämmen. Das gilt insbesondere für Gram-negative Bakterien, die durch eine dicke zweite Membran vor dem Angriff von Antibiotika geschützt sind. Mikrobiologinnen und…

Partner & Förderer