Molekulare Motoren mit Lichtantrieb

Japanische Forscher schaffen die theoretischen Grundlagen für molekulare Motoren, die durch Licht angetrieben werden

Der Traum von nanoskopischen Robotern beschäftigt die Menschheit seit langem. Und inzwischen scheint dieser Traum durchaus realistische Züge anzunehmen. So hat die Nanowissenschaft bereits Bauteile für Maschinen in Molekülgröße hervorgebracht. Japanische Wissenschaftler haben jetzt anhand quantenmechanischer und klassisch-mechanischer Betrachtungen durchgerechnet, wie ein solcher molekularer Motor funktioniert.

Der molekulare Motor der Forschergruppe um Yuichi Fujimura besteht aus einem Kohlenstoff-Fünfring mit zwei Doppelbindungen als Grundkörper. An der Spitze des Fünfecks befindet sich eine Aldehyd-Gruppe (ein Kohlenstoffatom mit einem Wasserstoff- und einem per Doppelbindung gebundem Sauerstoffatom) als asymmetrisches Rotorblatt. Sie ragt in einem 60o-Winkel aus der Ebene des Fünfecks heraus und ist frei drehbar. An den beiden „Schultern“ des Fünfecks sind zwei verschiedene „Dämpfer“ gebunden, die für eine kontrollierte Rotation des Rotors notwendig sind: ein Chloratom und eine Methylgruppe.

Um den Propeller in Rotation zu versetzen, muss eine äußere Kraft angelegt werden, etwa das elektromagnetische Feld einer Lichtwelle. Und was wäre da besser geeignet als ein Laserpuls. Laserlicht zeichnet sich durch seine Kohärenz aus, das heißt, alle Lichtteilchen schwingen mit derselben Amplitude und sind genau in Phase. So entsteht ein einheitliches elektromagnetisches Wechselfeld mit sehr hoher Energie.

Die elektromagnetischen Kräfte des Laserpulses „schubsen“ das Rotorblatt an. In jeder Drehrichtung steht der Rotor allerdings vor einer Barriere aufgrund von Abstoßungskräften durch die Dämpfer. In der „Zündungsphase“ pendelt der Rotor daher zunächst erst einmal hin und her. Wird die Pendelbewegung stärker, schafft es der Rotor, die Energiebarriere des etwas schwächeren Dämpfers, der Methylgruppe, zu überwinden – und kommt damit ins Rotieren. Schneller, immer schneller dreht er sich in dieser Beschleunigungsphase,um dann zunächst gleichmäßig mit konstanter Geschwindigkeit weiterzudrehen. Die Drehrichtung des Propellers hängt von der Lage der beiden Dämpfer ab: Der molekulare Motor kann als Bild oder als Spiegelbild aufgebaut sein, so sind rechts und links herum drehende Propeller zugänglich. Weitere Eigenschaften des Motors, etwa das Drehmoment, können über die Größen des Laserpulses wie Frequenz, Dauer, Form und Intensität, gesteuert werden.

Kontakt:

Prof. Y.Fujimura
Department of Chemistry
Graduate School of Science
Tohoku University
Sendai 980-8578, Japan
Fax: (+81) 22-217-7715
E-mail: fujimura@mcl.chem.tohoku.ac.jp

Media Contact

Dr. Renate Hoer idw

Weitere Informationen:

http://www.angewandte.org

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Wolken bedecken die Nachtseite des heißen Exoplaneten WASP-43b

Ein Forschungsteam, darunter Forschende des MPIA, hat mit Hilfe des Weltraumteleskops James Webb eine Temperaturkarte des heißen Gasriesen-Exoplaneten WASP-43b erstellt. Der nahe gelegene Mutterstern beleuchtet ständig eine Hälfte des Planeten…

Neuer Regulator des Essverhaltens identifiziert

Möglicher Ansatz zur Behandlung von Übergewicht… Die rapide ansteigende Zahl von Personen mit Übergewicht oder Adipositas stellt weltweit ein gravierendes medizinisches Problem dar. Neben dem sich verändernden Lebensstil der Menschen…

Maschinelles Lernen optimiert Experimente mit dem Hochleistungslaser

Ein Team von internationalen Wissenschaftlerinnen und Wissenschaftlern des Lawrence Livermore National Laboratory (LLNL), des Fraunhofer-Instituts für Lasertechnik ILT und der Extreme Light Infrastructure (ELI) hat gemeinsam ein Experiment zur Optimierung…

Partner & Förderer