Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laseroptiken im Weltall

27.08.2007
Um Laseroptiken für den Einsatz unter Vakuumbedingungen zu qualifizieren, wurde am Laser Zentrum Hannover e.V. (LZH) eine Apparatur zur Messung der laserinduzierten Zerstörschwelle mit einer Hochvakuum-Testkammer ausgestattet.

In Zusammenarbeit mit dem DLR und der ESA konnte das Zerstörungsverhalten von typischen Laseroptiken untersucht werden.

Der Einsatz von hochwertigen Laseroptiken unter Vakuumbedingungen ist insbesondere für Anwendungen in der Raumfahrt von wachsendem Interesse. Im Vergleich zum üblichen Einsatz in der Erdatmosphäre treten zusätzliche Effekte im Vakuum auf, wenn die Optiken mit einem Laser bestrahlt werden. Eine drastisch reduzierte Laserfestigkeit kann die Folge sein, welches beispielsweise zu Funktionsstörungen bei Satelliten führen kann.

Um Laseroptiken für den Einsatz unter Vakuumbedingungen zu qualifizieren, wurde am Laser Zentrum Hannover e.V. (LZH) eine Apparatur zur Messung der laserinduzierten Zerstörschwelle mit einer Hochvakuum-Testkammer ausgestattet. In Zusammenarbeit mit dem DLR und der ESA konnte das Zerstörungsverhalten von typischen Laseroptiken untersucht werden.

So wurden u.a. Antireflexbeschichtungen untersucht, die mit unterschiedlichen Verfahren hergestellt wurden. Die Messungen ergaben, dass konventionelle e-beam Beschichtungen offenbar im Vakuum eine weitaus niedrigere Langzeitstabilität erreichen als unter Normal-Atmosphäre. Im Gegensatz hierzu haben ionengestützte Beschichtungen im Vakuum eine höhere Langzeitstabilität als in der Erdatmosphäre.

Die Ursache hierfür ist in der porösen Mikrostruktur der konventionell hergestellten Beschichtungen zu suchen. Atmosphärisches Wasser, das normalerweise in e-beam Schichten eingelagert ist, steht im Vakuum für die Abfuhr von Wärme nicht zur Verfügung. Vermutlich kommt die laserinduzierte Zerstörung durch eine stärkere lokale Erwärmung der Schichten zustande. In den mit Ionenstützung hergestellten Schichten ist auf Grund der kompakteren Mikrostruktur von einer besseren Wärmeableitung auszugehen.

Durch diese anwendungsnahen Voruntersuchungen am LZH ist es möglich, verbesserte optische Beschichtungen für künftige Satellitenmissionen zu entwickeln und bereits im Labor für den späteren Einsatz zu qualifizieren.

Kontakt:
Laser Zentrum Hannover e.V. (LZH)
Michael Botts
Hollerithallee 8
D-30419 Hannover
Tel.: +49 511 2788-151
Fax: +49 511 2788-100
E-Mail: m.botts@lzh.de
Das Laser Zentrum Hannover e.V. (LZH) ist eine durch Mittel des niedersächsischen Ministeriums für Wirtschaft, Arbeit und Verkehr unterstützte Forschungs- und Entwicklungseinrichtung auf dem Gebiet der Lasertechnik.

Michael Botts | idw
Weitere Informationen:
http://www.lzh.de

Weitere Berichte zu: Beschichtung LASEROPTIK LZH Schicht Vakuum Vakuumbedingung

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Innovation macht 3D-Drucker für kleinere und mittlere Unternehmen rentabel
24.03.2017 | Technische Hochschule Nürnberg Georg Simon Ohm

nachricht Neues energieeffizientes Verfahren zur Herstellung von Kohlenstofffasern
13.03.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise