Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Harter Rand - zäher Kern

19.10.2006
Turbinenschaufeln sind enormen Belastungen ausgesetzt. Ein neues Verfahren sorgt dafür, dass ihre Lebensdauer in der Dampfturbine erhöht werden kann. Die Eintrittskanten sind hart, das Innere zäh und elastisch.

Dampfturbinen sind das Rückgrat der Energieversorgung. Von ihrer Zuverlässigkeit und Lebensdauer hängt die Sicherheit der Stromversorgung ab. Während des Betriebs sind sie enormen Belastungen ausgesetzt. Insbesondere die sehr großen Turbinenschaufeln im Niederdruckteil von Dampfturbinen werden doppelt beansprucht: Einerseits durch hohe statische und zyklische mechanische Belastungen.

Andererseits sorgen winzige Wassertröpfchen für intensiven Verschleiß. Die Tröpfchen kondensieren aus dem Dampf aus, treffen mit hoher Geschwindigkeit auf die Eintrittskanten der Turbinenschaufeln und zerstören diese. "Um diesem Beanspruchungsmix länger zu widerstehen, sind zähharte Gefügezustände nötig, die bei hohen Festigkeiten noch ausrechend plastisch verformbar sind", erklärt Prof. Dr. Berndt Brenner vom Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS in Dresden. Besonders hoch beanspruchte Schaufeln werden deshalb aus ausscheidungshärtbaren Stählen gefertigt. Ein Verfahren um die Randschicht zu härten, gab es für diese Werkstoffklasse jedoch bisher noch nicht.

Um diesem Dilemma abzuhelfen, entwickelte das Dresdner Team im Auftrag von Siemens Power Generation Mülheim ein neuartiges Randschichthärtungsverfahren. In den ersten zwei Arbeitsgängen wird durch eine komplette Lösungsglühung der gesamten Turbinenschaufel und einer anschließenden Aushärtung bei sehr hohen Temperaturen ein überalterter, weicher und ausreichend zäher Gefügezustand eingestellt. Im dritten Schritt wird die Eintrittskante der Schaufel, also nur die verschleißbeanspruchte Zone, noch einmal mit dem Laser bei höheren Temperaturen lösungsgeglüht und abgeschreckt. Anschließend wird die gesamte Turbinenschaufel erneut Ausscheidungs gehärtet, allerdings bei einer viel niedrigeren Temperatur. So wird nur die Randschicht hart, der Kern bleibt zäh. "Der damit verbundene Härteanstieg vermindert den Verschleiß im Kavitationsverschleißtest um etwa den Faktor drei. Damit können wir die Lebensdauer der Turbinenschaufel erhöhen", kommentiert Frank Tietz vom IWS.

Inzwischen hat das Verfahren seine industrielle Feuertaufe überstanden und bewährt sich in 23 großen Dampfturbinen in Kraftwerken in Deutschland, Europa und dem Nahen und Fernen Osten. Für ihre Entwicklungen zum "Randschichtaushärten durch lokales Erzeugen von nanoskaligen Ausscheidungen - ein neues Verfahren zum Verschleißschutz von ausscheidungshärtbaren Werkstoffen" erhalten Prof. Dr. Berndt Brenner und Dipl.-Ing. Frank Tietz einen Joseph-von-Fraunhofer-Preis 2006.

Ansprechpartner:
Prof. Berndt Brenner
Telefon: 03 51 / 25 83-2 07
Fax: 03 51 / 25 83-2 07
berndt.brenner@iws.fraunhofer.de
Dipl.Ing. Frank Tietz
Telefon: 03 51 / 25 83-2 03
Fax: 03 51 / 25 83-2 07
frank.tietz@iws.fraunhofer.de

Isolde Rötzer | Fraunhofer-Gesellschaft
Weitere Informationen:
http://www.iws.fraunhofer.de
http://www.fraunhofer.de/fhg/company/science/2006/J-F-P_2006.jsp

Weitere Berichte zu: Dampfturbine IWS Randschicht Temperatur Turbinenschaufel

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Smarte Rollstühle, vorausschauende Prothesen
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie