Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Harter Rand - zäher Kern

19.10.2006
Turbinenschaufeln sind enormen Belastungen ausgesetzt. Ein neues Verfahren sorgt dafür, dass ihre Lebensdauer in der Dampfturbine erhöht werden kann. Die Eintrittskanten sind hart, das Innere zäh und elastisch.

Dampfturbinen sind das Rückgrat der Energieversorgung. Von ihrer Zuverlässigkeit und Lebensdauer hängt die Sicherheit der Stromversorgung ab. Während des Betriebs sind sie enormen Belastungen ausgesetzt. Insbesondere die sehr großen Turbinenschaufeln im Niederdruckteil von Dampfturbinen werden doppelt beansprucht: Einerseits durch hohe statische und zyklische mechanische Belastungen.

Andererseits sorgen winzige Wassertröpfchen für intensiven Verschleiß. Die Tröpfchen kondensieren aus dem Dampf aus, treffen mit hoher Geschwindigkeit auf die Eintrittskanten der Turbinenschaufeln und zerstören diese. "Um diesem Beanspruchungsmix länger zu widerstehen, sind zähharte Gefügezustände nötig, die bei hohen Festigkeiten noch ausrechend plastisch verformbar sind", erklärt Prof. Dr. Berndt Brenner vom Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS in Dresden. Besonders hoch beanspruchte Schaufeln werden deshalb aus ausscheidungshärtbaren Stählen gefertigt. Ein Verfahren um die Randschicht zu härten, gab es für diese Werkstoffklasse jedoch bisher noch nicht.

Um diesem Dilemma abzuhelfen, entwickelte das Dresdner Team im Auftrag von Siemens Power Generation Mülheim ein neuartiges Randschichthärtungsverfahren. In den ersten zwei Arbeitsgängen wird durch eine komplette Lösungsglühung der gesamten Turbinenschaufel und einer anschließenden Aushärtung bei sehr hohen Temperaturen ein überalterter, weicher und ausreichend zäher Gefügezustand eingestellt. Im dritten Schritt wird die Eintrittskante der Schaufel, also nur die verschleißbeanspruchte Zone, noch einmal mit dem Laser bei höheren Temperaturen lösungsgeglüht und abgeschreckt. Anschließend wird die gesamte Turbinenschaufel erneut Ausscheidungs gehärtet, allerdings bei einer viel niedrigeren Temperatur. So wird nur die Randschicht hart, der Kern bleibt zäh. "Der damit verbundene Härteanstieg vermindert den Verschleiß im Kavitationsverschleißtest um etwa den Faktor drei. Damit können wir die Lebensdauer der Turbinenschaufel erhöhen", kommentiert Frank Tietz vom IWS.

Inzwischen hat das Verfahren seine industrielle Feuertaufe überstanden und bewährt sich in 23 großen Dampfturbinen in Kraftwerken in Deutschland, Europa und dem Nahen und Fernen Osten. Für ihre Entwicklungen zum "Randschichtaushärten durch lokales Erzeugen von nanoskaligen Ausscheidungen - ein neues Verfahren zum Verschleißschutz von ausscheidungshärtbaren Werkstoffen" erhalten Prof. Dr. Berndt Brenner und Dipl.-Ing. Frank Tietz einen Joseph-von-Fraunhofer-Preis 2006.

Ansprechpartner:
Prof. Berndt Brenner
Telefon: 03 51 / 25 83-2 07
Fax: 03 51 / 25 83-2 07
berndt.brenner@iws.fraunhofer.de
Dipl.Ing. Frank Tietz
Telefon: 03 51 / 25 83-2 03
Fax: 03 51 / 25 83-2 07
frank.tietz@iws.fraunhofer.de

Isolde Rötzer | Fraunhofer-Gesellschaft
Weitere Informationen:
http://www.iws.fraunhofer.de
http://www.fraunhofer.de/fhg/company/science/2006/J-F-P_2006.jsp

Weitere Berichte zu: Dampfturbine IWS Randschicht Temperatur Turbinenschaufel

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Ausweg aus dem Chrom-Verbot
30.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Schnell, präzise, aber nicht kalt
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Im Focus: Forscher entschlüsseln erstmals intaktes Virus atomgenau mit Röntgenlaser

Bahnbrechende Untersuchungsmethode beschleunigt Proteinanalyse um ein Vielfaches

Ein internationales Forscherteam hat erstmals mit einem Röntgenlaser die atomgenaue Struktur eines intakten Viruspartikels entschlüsselt. Die verwendete...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Individualisierte Faserkomponenten für den Weltmarkt

22.06.2017 | Physik Astronomie

Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen

22.06.2017 | Biowissenschaften Chemie

Spinflüssigkeiten – zurück zu den Anfängen

22.06.2017 | Physik Astronomie