Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Präzision mit Laserradar

08.01.2001


... mehr zu:
»FBH »Laser »Laserdiod »Laserradar
Eine neuartige Laserdiode aus dem Berliner Ferdinand-Braun-Institut (FBH) ist das Herzstück eines Laserradars, mit dem das hoch präzise Vermessen von Abständen möglich ist. Der Einsatz von Licht sprengt die
Grenzen etablierter Messtechnik

Die Nutzung des Lichtes jenseits der abbildenden Optik hat in den letzten Jahren und Jahrzehnten rasante Fortschritte gemacht. Als Kronzeuge für diese Entwicklung steht der Laser. Laserlicht ist aus dem täglichen Leben nicht mehr wegzudenken. Fehlte es, könnte man nicht so präzise schweißen, schneiden, bohren, abtragen und beschichten. Bilder und Klänge hätten weit weniger Brillanz, Drucker wären nicht gestochen scharf, an den Kassen der Supermärkte müssten Verkäuferinnen wieder lange Zahlenreihen eintippen statt den Preis per Laserscanner abzutasten.
Waren Laser früher noch große Monster mit aufwändiger Kühlung, kann man sie heute auf einem Chip unterbringen. Die Lebensgemeinschaft von Lasertechnologie und Mikroelektronik erschließt immer neue Anwendungsfelder.

Jüngstes Beispiel sind Laserdioden aus dem Ferdinand-Braun-Institut für Höchstfrequenztechnik (FBH) in einem Laser-Radar. Wie es zu der Entwicklung kam, schildert Dr. Andreas Klehr: "Die Firma Siemens suchte nach einer Möglichkeit, riesige Turbinen haargenau in das umgebende Gehäuse einzupassen. Je näher die Turbinenschaufeln der Gehäusewand kommen (ohne sie zu berühren), um so höher ist die Energieausbeute beim Betrieb der Turbine. Das zu realisieren, war die Herausforderung."
Um sie zu bewältigen, entwickelten die FBH-Forscher eine Halbleiter-Laserdiode, deren Funktionsprinzip Dr. Klehr so beschreibt: "Laserlicht wird auf die Schaufeloberfläche gestrahlt und die Wellenlänge kontinuierlich verändert. Aus dem Lichtecho kann man dann die Maße mit bisher nicht gekannter Präzision berechnen". So können die Monteure das Großaggregat in zehn Meter Entfernung noch mit einer Genauigkeit von einem hundertstel Millimeter vermessen. Das Laserradar, eine Gemeinschaftsarbeit zwischen der Siemens AG, der Firma Carl Zeiss Jena und dem FBH, ist eine Maßanfertigung mit Leistungsparametern, die man nicht per Katalog bestellen kann.

Hightech stecknadelkopfgroß
Wie kommt es, dass die Strahlen aus winzigen Laserdioden genau das tun, was sie nach dem Willen der Ingenieure tun sollen? Das Schlüsselwort heißt III / V-Halbleitertechnologie. Auf Substraten aus Galliumarsenid (GaAs) trägt man extrem dünne Schichten so auf, dass die Laserdioden im Wellenlängenbereich von 700 bis 1100 Nanometern arbeiten - optimal für solche speziellen Anwendungen.
Halbleiterlaser sind zwar gerade stecknadelkopfgroß, verkörpern aber Hightech in Reinkultur; die Herstellung eines solchen Chips verlangt viel Erfahrung und technologisches Gespür. "Für das Radarprinzip", erläutert Dr. Klehr, "soll die Laserlinie möglichst schmal, also die Frequenz hoch stabil sein, was einem Hundertmillionstel der Laserwellenlänge entspricht. Das erreichen wir durch ein in den Laser integriertes Gitter mit einer Periodenlänge von 150 Nanometern. Diese schmale Linie muss kontinuierlich über 100 Gigahertz (GHz) verschiebbar sein. Das wiederum lässt sich durch Aufheizen einzelner Bereiche des Lasers realisieren. Dafür werden spezielle Kontakte auf den Kristall aufgedampft. In das fertige Schichtpaket werden Strukturen geätzt, die der Führung des Lichtes dienen. Die Laser werden schließlich mit einem Diamantschneider aus dem Wafer heraus präpariert und in Laserdiodenträger eingebaut."

Die neue Laserbaureihe erfordert rund 100 Arbeitsschritte, die mehrere Wochen dauern. Dann jedoch ist ein kleines technisches Kunstwerk fertig, das seinesgleichen sucht. Wieder einmal hat ein ausgefallener Kundenwunsch die Technologie ein gutes Stück vorangebracht.

Weitere Einsatzfelder
Die FBH-Wissenschaftler suchen inzwischen weitere Einsatzfelder für ihre Laser-Sensoren. Erneut bietet Siemens einen Anwendungsfall: die elektrischen Oberleitungen bei der Deutschen Bahn AG. Bei diesen Leitungen soll der Verschleiß durch Abrieb gemessen werden - ein für die Sicherheit des Bahnbetriebs entscheidender Vorgang, denn frühzeitig könnte die Reparatur an einem kritischen Streckenabschnitt eingeleitet werden. Das Laserradar, erläutert Andreas Klehr, wird bei dieser Anwendung auf einer Lokomotive installiert und sein Impuls auf die Drähte geleitet. Aus der reflektierten Strahlung lässt sich "dann leicht" die Information über den Abrieb der Drähte herauslesen.

Weitere interessante Anwendungen dieser Laserdioden sind Oszillatoren für Nd-YAG-Lasersysteme in der Materialbearbeitung. Durch Übertragung der Technologie auf andere Wellenlängen werden auch Anwendungen in der Spektroskopie und Displaytechnologie möglich.

Ansprechpartner: Dr. Andreas Klehr, Tel.: 030 6392 2658, E-Mail: klehr@fbh-berlin.de

Bildunterschrift
Laserdiode mit eingebautem Gitter, auf einen Träger aus Aluminiumnitrid (AlN) montiert. Die drei Sektionen des neu entwickelten Lasers sind mit Bonddrähten kontaktiert. Die Gesamtlänge des Lasers beträgt 2mm. Abb: Ferdinand-Braun-Institut für Höchstfrequenztechnik (FBH)

Das FBH gehört zusammen mit 77 anderen außeruniversitären Forschungseinrichtungen zur Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz e.V. (WGL). Das Spektrum der Leibniz-Institute ist breit und reicht von den Natur-, Ingenieur- und Umweltwissenschaften über die Wirtschafts-, Sozial- und Raumwissenschaften bis hin zu den Geisteswissenschaften und Museen mit angeschlossener Forschungsabteilung. Die Institute arbeiten nachfrageorientiert und interdisziplinär. Sie sind von überregionaler Bedeutung, betreiben Vorhaben im gesamtstaatlichen Interesse und werden deshalb von Bund und Ländern gemeinsam gefördert. Näheres unter: http://www.wgl.de.

Weitere Informationen finden Sie im WWW:

Joachim Moerke | idw

Weitere Berichte zu: FBH Laser Laserdiod Laserradar

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Bioverfahrenstechnik - Mit Kugeln optimal messen
01.12.2017 | Fraunhofer-Institut für Elektronische Nanosysteme

nachricht Neues Verfahren für zukünftige Batterien
29.11.2017 | Hochschule Aalen

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Roboter-Navigation über die Cloud

11.12.2017 | Informationstechnologie

Molekulare Chaperone als Helfer gegen Chorea-Huntington identifiziert

11.12.2017 | Biowissenschaften Chemie

Mit den Augen der Biene: Zoologe der Uni Graz entwickelt Verfahren zur Verbesserung dunkler Bilder

11.12.2017 | Biowissenschaften Chemie