Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Präzision mit Laserradar

08.01.2001


... mehr zu:
»FBH »Laser »Laserdiod »Laserradar
Eine neuartige Laserdiode aus dem Berliner Ferdinand-Braun-Institut (FBH) ist das Herzstück eines Laserradars, mit dem das hoch präzise Vermessen von Abständen möglich ist. Der Einsatz von Licht sprengt die
Grenzen etablierter Messtechnik

Die Nutzung des Lichtes jenseits der abbildenden Optik hat in den letzten Jahren und Jahrzehnten rasante Fortschritte gemacht. Als Kronzeuge für diese Entwicklung steht der Laser. Laserlicht ist aus dem täglichen Leben nicht mehr wegzudenken. Fehlte es, könnte man nicht so präzise schweißen, schneiden, bohren, abtragen und beschichten. Bilder und Klänge hätten weit weniger Brillanz, Drucker wären nicht gestochen scharf, an den Kassen der Supermärkte müssten Verkäuferinnen wieder lange Zahlenreihen eintippen statt den Preis per Laserscanner abzutasten.
Waren Laser früher noch große Monster mit aufwändiger Kühlung, kann man sie heute auf einem Chip unterbringen. Die Lebensgemeinschaft von Lasertechnologie und Mikroelektronik erschließt immer neue Anwendungsfelder.

Jüngstes Beispiel sind Laserdioden aus dem Ferdinand-Braun-Institut für Höchstfrequenztechnik (FBH) in einem Laser-Radar. Wie es zu der Entwicklung kam, schildert Dr. Andreas Klehr: "Die Firma Siemens suchte nach einer Möglichkeit, riesige Turbinen haargenau in das umgebende Gehäuse einzupassen. Je näher die Turbinenschaufeln der Gehäusewand kommen (ohne sie zu berühren), um so höher ist die Energieausbeute beim Betrieb der Turbine. Das zu realisieren, war die Herausforderung."
Um sie zu bewältigen, entwickelten die FBH-Forscher eine Halbleiter-Laserdiode, deren Funktionsprinzip Dr. Klehr so beschreibt: "Laserlicht wird auf die Schaufeloberfläche gestrahlt und die Wellenlänge kontinuierlich verändert. Aus dem Lichtecho kann man dann die Maße mit bisher nicht gekannter Präzision berechnen". So können die Monteure das Großaggregat in zehn Meter Entfernung noch mit einer Genauigkeit von einem hundertstel Millimeter vermessen. Das Laserradar, eine Gemeinschaftsarbeit zwischen der Siemens AG, der Firma Carl Zeiss Jena und dem FBH, ist eine Maßanfertigung mit Leistungsparametern, die man nicht per Katalog bestellen kann.

Hightech stecknadelkopfgroß
Wie kommt es, dass die Strahlen aus winzigen Laserdioden genau das tun, was sie nach dem Willen der Ingenieure tun sollen? Das Schlüsselwort heißt III / V-Halbleitertechnologie. Auf Substraten aus Galliumarsenid (GaAs) trägt man extrem dünne Schichten so auf, dass die Laserdioden im Wellenlängenbereich von 700 bis 1100 Nanometern arbeiten - optimal für solche speziellen Anwendungen.
Halbleiterlaser sind zwar gerade stecknadelkopfgroß, verkörpern aber Hightech in Reinkultur; die Herstellung eines solchen Chips verlangt viel Erfahrung und technologisches Gespür. "Für das Radarprinzip", erläutert Dr. Klehr, "soll die Laserlinie möglichst schmal, also die Frequenz hoch stabil sein, was einem Hundertmillionstel der Laserwellenlänge entspricht. Das erreichen wir durch ein in den Laser integriertes Gitter mit einer Periodenlänge von 150 Nanometern. Diese schmale Linie muss kontinuierlich über 100 Gigahertz (GHz) verschiebbar sein. Das wiederum lässt sich durch Aufheizen einzelner Bereiche des Lasers realisieren. Dafür werden spezielle Kontakte auf den Kristall aufgedampft. In das fertige Schichtpaket werden Strukturen geätzt, die der Führung des Lichtes dienen. Die Laser werden schließlich mit einem Diamantschneider aus dem Wafer heraus präpariert und in Laserdiodenträger eingebaut."

Die neue Laserbaureihe erfordert rund 100 Arbeitsschritte, die mehrere Wochen dauern. Dann jedoch ist ein kleines technisches Kunstwerk fertig, das seinesgleichen sucht. Wieder einmal hat ein ausgefallener Kundenwunsch die Technologie ein gutes Stück vorangebracht.

Weitere Einsatzfelder
Die FBH-Wissenschaftler suchen inzwischen weitere Einsatzfelder für ihre Laser-Sensoren. Erneut bietet Siemens einen Anwendungsfall: die elektrischen Oberleitungen bei der Deutschen Bahn AG. Bei diesen Leitungen soll der Verschleiß durch Abrieb gemessen werden - ein für die Sicherheit des Bahnbetriebs entscheidender Vorgang, denn frühzeitig könnte die Reparatur an einem kritischen Streckenabschnitt eingeleitet werden. Das Laserradar, erläutert Andreas Klehr, wird bei dieser Anwendung auf einer Lokomotive installiert und sein Impuls auf die Drähte geleitet. Aus der reflektierten Strahlung lässt sich "dann leicht" die Information über den Abrieb der Drähte herauslesen.

Weitere interessante Anwendungen dieser Laserdioden sind Oszillatoren für Nd-YAG-Lasersysteme in der Materialbearbeitung. Durch Übertragung der Technologie auf andere Wellenlängen werden auch Anwendungen in der Spektroskopie und Displaytechnologie möglich.

Ansprechpartner: Dr. Andreas Klehr, Tel.: 030 6392 2658, E-Mail: klehr@fbh-berlin.de

Bildunterschrift
Laserdiode mit eingebautem Gitter, auf einen Träger aus Aluminiumnitrid (AlN) montiert. Die drei Sektionen des neu entwickelten Lasers sind mit Bonddrähten kontaktiert. Die Gesamtlänge des Lasers beträgt 2mm. Abb: Ferdinand-Braun-Institut für Höchstfrequenztechnik (FBH)

Das FBH gehört zusammen mit 77 anderen außeruniversitären Forschungseinrichtungen zur Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz e.V. (WGL). Das Spektrum der Leibniz-Institute ist breit und reicht von den Natur-, Ingenieur- und Umweltwissenschaften über die Wirtschafts-, Sozial- und Raumwissenschaften bis hin zu den Geisteswissenschaften und Museen mit angeschlossener Forschungsabteilung. Die Institute arbeiten nachfrageorientiert und interdisziplinär. Sie sind von überregionaler Bedeutung, betreiben Vorhaben im gesamtstaatlichen Interesse und werden deshalb von Bund und Ländern gemeinsam gefördert. Näheres unter: http://www.wgl.de.

Weitere Informationen finden Sie im WWW:

Joachim Moerke | idw

Weitere Berichte zu: FBH Laser Laserdiod Laserradar

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Mitarbeiter der Hochschule Ulm entwickeln neue Methode zur Desinfektion von Kontaktlinsen
17.07.2017 | Hochschule Ulm

nachricht Form aus dem Vakuum: Tiefziehen von Dünnglas eröffnet neue Anwendungsfelder
07.07.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Robuste Computer für's Auto

26.07.2017 | Seminare Workshops

Läuft wie am Schnürchen!

26.07.2017 | Seminare Workshops

Leicht ist manchmal ganz schön schwer!

26.07.2017 | Seminare Workshops