Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Excimerlaser-Bearbeitung: Klare Strukturen unter dem Flüssigkeitsfilm

30.08.2000


Ein Flüssigkeitsfilm auf Metall oder Keramik sorgt dafür, dass die Ergebnisse sehr viel exakter ausfallen, wenn diese Werkstoffe mit Laserstrahlen bearbeitet werden. Die Qualität kleinster Bauteile, die mit hoher Präzision gefertigt werden müssen, ist dadurch deutlich zu steigern. An der Universität Erlangen-Nürnberg erprobt Dipl.-Ing. Stephan Roth am Lehrstuhl für Fertigungstechnologie von Prof. Dr.-Ing. Manfred Geiger die Möglichkeiten des dort entwickelten neuen Verfahrens, das winzige Splitter oder verwaschene Konturen, die bisher unvermeidlich waren, gar nicht erst entstehen lässt. Neben weiteren Verbesserungen der Werkstückqualität ist geplant, auch andere Materialien, speziell Kunststoffe, in die Forschungen einzubeziehen. Die Deutsche Forschungsgemeinschaft hat bisher eine Fördersumme von rund 461.000 Mark bereitgestellt.

Zur Bearbeitung sehr unterschiedlicher Werkstoffe empfiehlt sich Laserstrahlung als ein vielseitig verwendbares Werkzeug. Vor allem im Bereich der Mikrosystemtechnik und der Mikromechanik nimmt ihre Bedeutung ständig zu. Der steigende Bedarf an miniaturisierten Bauteilen für neue Produkte macht eine höhere Bearbeitungsqualität erforderlich, so dass auch an die Herstellungsverfahren neue Anforderungen gestellt werden.

Keramische Werkstoffe, die für stark temperaturbeanspruchte Bauteile besonders geeignet sind, werden vor allem mit Excimerlaserstrahlung bearbeitet. Keramiken sind äußerst thermoschock-empfindlich, weshalb es sinnvoll ist, solche Materialien mittels Verdampfen abzutragen. Dazu muss nur geringe Energie eingebracht werden, die das Bauteil nicht schädigt. Bei metallischen Werkstoffen erfolgt der Abtrag in erster Linie über die schmelzflüssige Phase.

Allerdings lagern sich bei der Bearbeitung sowohl keramischer als auch metallischer Werkstoffe kleinste Materialpartikel oder Schmelze-Tropfen in den erzeugten Strukturen oder in deren unmittelbarer Nähe an. Die Strukturen metallischer Werkstücke sind außerdem stark von Schmelze überlagert. Solche Mängel nachträglich zu beheben - was, soweit überhaupt möglich, oftmals mechanisch geschehen muss - ist meist sehr aufwendig und kostenintensiv.

Die Einsatzmöglichkeiten der Excimerlaserstrahl-Materialbearbeitung gerade in der Mikrosystemtechnik sind deshalb beschränkt. Wird jedoch während der Bestrahlung ein dünner Flüssigkeitsfilm auf die Substratoberfläche aufgesprüht, können derartige Qualitätseinbußen nahezu vollständig vermieden werden. Allerdings ist die Abtragsrate bei den meisten untersuchten Keramiken und Stählen deutlich reduziert. Weitere Untersuchungen zielen daher im wesentlichen darauf ab, die Abtragsraten zu erhöhen, um die Bearbeitungsdauer zu verkürzen und das Verfahren wirtschaftlich interessant zu machen.

Seit Beginn des DFG-Projekts im Februar 1997 waren die Arbeiten auf das Verständnis der Abtragsmechanismen konzentriert. Die in Grundlagenuntersuchungen erarbeiteten Strahl-Stoff-Wechselwirkungen für verschiedene keramische und metallische Werkstoffe werden nun auf die Herstellung mikrosystemtechnischer Bauteile übertragen. Inzwischen stehen zudem Apparaturen zur Verfügung, die im Versuchsmaßstab die Bearbeitung unter einem gleichmäßig verdüsten Flüssigkeitsfilm ermöglichen. Insbesondere erlaubt es ein geschlossener Flüssigkeitskreislauf, Gemische mit definierten Prozentanteilen der einzelnen Bestandteile zu versprühen. Durch Zugabe von Additiven soll das Bearbeitungsergebnis weiter verbessert werden.

Die Untersuchungen haben gezeigt, dass diese Verfahrensvariante im Vergleich zu konventioneller Technik die Strukturqualität bei der abtragenden Bearbeitung deutlich erhöht. Entscheidende Vorteile liegen insbesondere darin, dass sich Ablagerungen in der Bearbeitungsrandzone vermeiden lassen und die Schmelzphasenbildung bei der Bearbeitung von metallischen Werkstoffen reduziert ist. Bis Mitte des Jahres 2001, zum voraussichtlichen Ende der Projektlaufzeit, sollen die Grundlagen auf ein breites Werkstoffspektrum übertragen werden, das auch Polymere umfassen wird. Die Verfahrensgrenzen für planare wie auch dreidimensionale Bauteile werden dabei durch eine verbesserte Prozesstechnik erweitert.

Im weiteren Projektverlauf wird zudem untersucht, inwieweit die Methode zur gezielten Oberflächenmodifizierung mittels Excimerlaserstrahlung eingesetzt werden kann, um sowohl das Oberflächenprofil zu gestalten als auch die mechanischen Eigenschaften zu verändern. Polymere beispielsweise werden durch UV-Strahlung besser zum Verkleben geeignet. So ergeben sich zusätzliche, technologisch sinnvolle Anwendungsgebiete für das neue Verfahren.

* Kontakt:
Prof. Dr.-Ing. Manfred Geiger, Dipl.-Ing. Stephan Roth


Lehrstuhl für Fertigungstechnologie, Egerlandstr. 11, 91058 Erlangen
Tel.: 09131/85 -27140, -23237, Fax: 09131/36 403
E-Mail:m.geiger@lft.uni-erlangen.de s.roth@lft.uni-erlangen.de

Weitere Informationen finden Sie im WWW:


Gertraud Pickel |

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Innovation macht 3D-Drucker für kleinere und mittlere Unternehmen rentabel
24.03.2017 | Technische Hochschule Nürnberg Georg Simon Ohm

nachricht Neues energieeffizientes Verfahren zur Herstellung von Kohlenstofffasern
13.03.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise