Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Excimerlaser-Bearbeitung: Klare Strukturen unter dem Flüssigkeitsfilm

30.08.2000


Ein Flüssigkeitsfilm auf Metall oder Keramik sorgt dafür, dass die Ergebnisse sehr viel exakter ausfallen, wenn diese Werkstoffe mit Laserstrahlen bearbeitet werden. Die Qualität kleinster Bauteile, die mit hoher Präzision gefertigt werden müssen, ist dadurch deutlich zu steigern. An der Universität Erlangen-Nürnberg erprobt Dipl.-Ing. Stephan Roth am Lehrstuhl für Fertigungstechnologie von Prof. Dr.-Ing. Manfred Geiger die Möglichkeiten des dort entwickelten neuen Verfahrens, das winzige Splitter oder verwaschene Konturen, die bisher unvermeidlich waren, gar nicht erst entstehen lässt. Neben weiteren Verbesserungen der Werkstückqualität ist geplant, auch andere Materialien, speziell Kunststoffe, in die Forschungen einzubeziehen. Die Deutsche Forschungsgemeinschaft hat bisher eine Fördersumme von rund 461.000 Mark bereitgestellt.

Zur Bearbeitung sehr unterschiedlicher Werkstoffe empfiehlt sich Laserstrahlung als ein vielseitig verwendbares Werkzeug. Vor allem im Bereich der Mikrosystemtechnik und der Mikromechanik nimmt ihre Bedeutung ständig zu. Der steigende Bedarf an miniaturisierten Bauteilen für neue Produkte macht eine höhere Bearbeitungsqualität erforderlich, so dass auch an die Herstellungsverfahren neue Anforderungen gestellt werden.

Keramische Werkstoffe, die für stark temperaturbeanspruchte Bauteile besonders geeignet sind, werden vor allem mit Excimerlaserstrahlung bearbeitet. Keramiken sind äußerst thermoschock-empfindlich, weshalb es sinnvoll ist, solche Materialien mittels Verdampfen abzutragen. Dazu muss nur geringe Energie eingebracht werden, die das Bauteil nicht schädigt. Bei metallischen Werkstoffen erfolgt der Abtrag in erster Linie über die schmelzflüssige Phase.

Allerdings lagern sich bei der Bearbeitung sowohl keramischer als auch metallischer Werkstoffe kleinste Materialpartikel oder Schmelze-Tropfen in den erzeugten Strukturen oder in deren unmittelbarer Nähe an. Die Strukturen metallischer Werkstücke sind außerdem stark von Schmelze überlagert. Solche Mängel nachträglich zu beheben - was, soweit überhaupt möglich, oftmals mechanisch geschehen muss - ist meist sehr aufwendig und kostenintensiv.

Die Einsatzmöglichkeiten der Excimerlaserstrahl-Materialbearbeitung gerade in der Mikrosystemtechnik sind deshalb beschränkt. Wird jedoch während der Bestrahlung ein dünner Flüssigkeitsfilm auf die Substratoberfläche aufgesprüht, können derartige Qualitätseinbußen nahezu vollständig vermieden werden. Allerdings ist die Abtragsrate bei den meisten untersuchten Keramiken und Stählen deutlich reduziert. Weitere Untersuchungen zielen daher im wesentlichen darauf ab, die Abtragsraten zu erhöhen, um die Bearbeitungsdauer zu verkürzen und das Verfahren wirtschaftlich interessant zu machen.

Seit Beginn des DFG-Projekts im Februar 1997 waren die Arbeiten auf das Verständnis der Abtragsmechanismen konzentriert. Die in Grundlagenuntersuchungen erarbeiteten Strahl-Stoff-Wechselwirkungen für verschiedene keramische und metallische Werkstoffe werden nun auf die Herstellung mikrosystemtechnischer Bauteile übertragen. Inzwischen stehen zudem Apparaturen zur Verfügung, die im Versuchsmaßstab die Bearbeitung unter einem gleichmäßig verdüsten Flüssigkeitsfilm ermöglichen. Insbesondere erlaubt es ein geschlossener Flüssigkeitskreislauf, Gemische mit definierten Prozentanteilen der einzelnen Bestandteile zu versprühen. Durch Zugabe von Additiven soll das Bearbeitungsergebnis weiter verbessert werden.

Die Untersuchungen haben gezeigt, dass diese Verfahrensvariante im Vergleich zu konventioneller Technik die Strukturqualität bei der abtragenden Bearbeitung deutlich erhöht. Entscheidende Vorteile liegen insbesondere darin, dass sich Ablagerungen in der Bearbeitungsrandzone vermeiden lassen und die Schmelzphasenbildung bei der Bearbeitung von metallischen Werkstoffen reduziert ist. Bis Mitte des Jahres 2001, zum voraussichtlichen Ende der Projektlaufzeit, sollen die Grundlagen auf ein breites Werkstoffspektrum übertragen werden, das auch Polymere umfassen wird. Die Verfahrensgrenzen für planare wie auch dreidimensionale Bauteile werden dabei durch eine verbesserte Prozesstechnik erweitert.

Im weiteren Projektverlauf wird zudem untersucht, inwieweit die Methode zur gezielten Oberflächenmodifizierung mittels Excimerlaserstrahlung eingesetzt werden kann, um sowohl das Oberflächenprofil zu gestalten als auch die mechanischen Eigenschaften zu verändern. Polymere beispielsweise werden durch UV-Strahlung besser zum Verkleben geeignet. So ergeben sich zusätzliche, technologisch sinnvolle Anwendungsgebiete für das neue Verfahren.

* Kontakt:
Prof. Dr.-Ing. Manfred Geiger, Dipl.-Ing. Stephan Roth


Lehrstuhl für Fertigungstechnologie, Egerlandstr. 11, 91058 Erlangen
Tel.: 09131/85 -27140, -23237, Fax: 09131/36 403
E-Mail:m.geiger@lft.uni-erlangen.de s.roth@lft.uni-erlangen.de

Weitere Informationen finden Sie im WWW:


Gertraud Pickel |

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Mitarbeiter der Hochschule Ulm entwickeln neue Methode zur Desinfektion von Kontaktlinsen
17.07.2017 | Hochschule Ulm

nachricht Form aus dem Vakuum: Tiefziehen von Dünnglas eröffnet neue Anwendungsfelder
07.07.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: Das Proton präzise gewogen

Wie schwer ist ein Proton? Auf dem Weg zur möglichst exakten Kenntnis dieser fundamentalen Konstanten ist jetzt Wissenschaftlern aus Deutschland und Japan ein wichtiger Schritt gelungen. Mit Präzisionsmessungen an einem einzelnen Proton konnten sie nicht nur die Genauigkeit um einen Faktor drei verbessern, sondern auch den bisherigen Wert korrigieren.

Die Masse eines einzelnen Protons noch genauer zu bestimmen – das machen die Physiker um Klaus Blaum und Sven Sturm vom Max-Planck-Institut für Kernphysik in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

Technologietag der Fraunhofer-Allianz Big Data: Know-how für die Industrie 4.0

18.07.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - September 2017

17.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

1,4 Millionen Euro für Forschungsprojekte im Industrie 4.0-Kontext

20.07.2017 | Förderungen Preise

Von photonischen Nanoantennen zu besseren Spielekonsolen

20.07.2017 | Physik Astronomie

Bildgebung von entstehendem Narbengewebe

20.07.2017 | Biowissenschaften Chemie