Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Optisches Getriebe

05.02.2001


Der Femtosekunden-Kammgenerator revolutioniert die optische Messtechnik

Von einem Gang in den anderen wechseln - was beim Auto längst schnell und einfach funktioniert, war bei der Übersetzung von Wellenlängen bisher ein mühsamer Weg mit vielen Zwischenschritten. Ein neues Gerät, das Wissenschaftler der Physikalisch-Technischen Bundesanstalt (PTB) in Braunschweig entwickelt haben, schafft diese Schwierigkeiten aus der Welt. Es beruht auf der Eigenschaft von Femtosekundenlasern, extrem kurze, aber sehr breitbandige Lichtpulse auszusenden. Damit können die Welten, die beispielsweise zwischen Mikrowellen- und optischer Strahlung liegen, in einem einzigen Schritt überbrückt werden. Mit dem neuen Femtosekunden-Kammgenerator rückt auch die Entwicklung neuartiger Atomuhren auf der Basis optischer Standards ein großes Stück näher.

"Hier haben sie nicht aufgeräumt" - das ist der erste Eindruck beim Betreten des Labors. Der Eindruck täuscht. Denn all die kleinen Spiegel, die scheinbar wahllos auf einem Messtisch angeordnet sind, erfüllen äußerst präzise Aufgaben: "Dieser Resonator hält Licht quasi gefangen", erklärt Dr. Jörn Stenger, der das Gerät mit entwickelt hat. "Er wirft es hin und her und verstärkt es dabei ständig. Am Ende kommt sehr intensives und gerichtetes Licht heraus, ein Laserstrahl." Doch anders als beispielsweise ein Laserpointer sendet der Femtosekundenlaser kein einfarbiges Licht, sondern sehr viele Farben gleichzeitig in Form von sehr kurzen Pulsen aus. "Unser Laser erzeugt alle nur denkbaren Frequenzen bzw. Wellenlängen - auch weit über den optisch sichtbaren Bereich hinaus", sagt Stenger. Das Licht wandert auf seinem Weg durch die Apparatur durch eine spezielle, neuartige Mikrostrukturfaser, die das Frequenzspektrum noch einmal verbreitert, so dass es alle Regenbogenfarben enthält und hell weiß erscheint - nicht gerade das, was man von einem Laser gewohnt ist. So wird das Gerät zu einem universellen Strahlungs-Lieferanten. Millionen von Frequenzen kommen aus ihm heraus - und zwar schön gleichmäßig geordnet. Die Abstände zwischen all diesen Frequenzen sind exakt gleich groß. Betrachtet man das Ganze auf einem Diagramm, dann erweckt es den Eindruck eines Kamms mit "Zacken" aus vielen einzelnen Frequenzen.

Die gleichmäßigen Abstände machen den Femtosekunden-Kammgenerator zum universellen Übersetzer: Man vergleicht die Frequenz eines beliebigen Lasers mit der Frequenz einer Kammzacke. Dann braucht man nur noch den Abstand zu einer anderen Kammzacke zu messen und hat mit Leichtigkeit die Größenordnungen überbrückt. "Dafür brauchten wir bisher eine komplizierte Frequenzmesskette mit vielen Zwischenoszillatoren, die den ganzen Keller füllen", sagt Stenger. Arbeiten, für die bisher fünf Personen nötig waren, kann nun ein einziger Wissenschaftler erledigen. Somit senkt der Femtosekundenkammgenerator den Aufwand bei allen Frequenzmessungen drastisch: zum Beispiel, wenn es darum geht, eine Frequenz mit dem nationalen Frequenznormal, der Caesium-Atomuhr der PTB, zu vergleichen. "Solche Vergleiche mit Caesium-Genauigkeit braucht man vielleicht nicht im täglichen Leben", schränkt Stenger ein. "Aber für die Grundlagenforscher sind sie äußerst interessant." Erst kürzlich haben sie hier beide PTB-Kandidaten für die Atomuhr der Zukunft auf Herz und Nieren überprüft: das Calcium- und das Ytterbium-Frequenznormal. Die beiden stehen für den Versuch, in Zukunft die Einheiten der Sekunde und der Frequenz aus Schwingungen von Atomen (bei Calcium) oder Ionen (bei Ytterbium) abzuleiten, die nicht mehr wie bei der jetzigen Caesium-Atomuhr im Mikrowellenbereich, sondern im sichtbaren Bereich liegen.

Eine solche optische Uhr hätte den großen Vorteil, dass sie den Sekundentakt mit sehr viel größerer Genauigkeit vorgeben kann. Eine Schwierigkeit dabei wird mit dem neuen Gerät praktisch bedeutungslos: Die optischen Frequenzen müssen erst wieder in den Bereich kleinerer Frequenzen zurückgeführt werden, die beispielsweise zur Regelung vieler elektronischer Geräte benötigt werden. "Wir haben jetzt ein optisches Getriebe", sagt Stenger. Das Fahrzeug dazu - um bei diesem Bild zu bleiben - muss allerdings noch weiter entwickelt werden. Aber in einigen Jahren könnte es soweit sein: Das Zeitalter der "optischen Atomuhren" beginnt. Technische Anwendungen, die auf genaue und stabile "Zeitzeichen" angewiesen sind - wie das GPS (Global Positioning System) oder verschiedenste Untersuchungen in der Grundlagenforschung -, werden davon profitieren.


Bild:
Die Strahlung des Femtosekunden-Kammgenerators überdeckt große Teile des optischen Spektrums. Es erscheint im Bild zwar kontinuierlich, besteht aber aus einer großen Zahl dicht benachbarter Spektrallinien mit genau bekannten Frequenzen.
(Das farbige Bild kann in elektronischer Form bei der Presse- und Öffentlichkeitsarbeit der PTB bestellt werden: E-Mail: presse@ptb.de).

Weitere Informationen:
Dr. Jörn Stenger, Telefon (0531) 592-4429, E-Mail: Joern.Stenger@ptb.de
PTB-Projekt "Optische Frequenzmessung"
Physikalisch-Technische Bundesanstalt (PTB)

Dipl.-Journ. Erika Schow | idw

Weitere Berichte zu: Caesium-Atomuhr Femtosekunden-Kammgenerator Frequenz Laser

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Innovation macht 3D-Drucker für kleinere und mittlere Unternehmen rentabel
24.03.2017 | Technische Hochschule Nürnberg Georg Simon Ohm

nachricht Neues energieeffizientes Verfahren zur Herstellung von Kohlenstofffasern
13.03.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise