Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Optisches Getriebe

05.02.2001


Der Femtosekunden-Kammgenerator revolutioniert die optische Messtechnik

Von einem Gang in den anderen wechseln - was beim Auto längst schnell und einfach funktioniert, war bei der Übersetzung von Wellenlängen bisher ein mühsamer Weg mit vielen Zwischenschritten. Ein neues Gerät, das Wissenschaftler der Physikalisch-Technischen Bundesanstalt (PTB) in Braunschweig entwickelt haben, schafft diese Schwierigkeiten aus der Welt. Es beruht auf der Eigenschaft von Femtosekundenlasern, extrem kurze, aber sehr breitbandige Lichtpulse auszusenden. Damit können die Welten, die beispielsweise zwischen Mikrowellen- und optischer Strahlung liegen, in einem einzigen Schritt überbrückt werden. Mit dem neuen Femtosekunden-Kammgenerator rückt auch die Entwicklung neuartiger Atomuhren auf der Basis optischer Standards ein großes Stück näher.

"Hier haben sie nicht aufgeräumt" - das ist der erste Eindruck beim Betreten des Labors. Der Eindruck täuscht. Denn all die kleinen Spiegel, die scheinbar wahllos auf einem Messtisch angeordnet sind, erfüllen äußerst präzise Aufgaben: "Dieser Resonator hält Licht quasi gefangen", erklärt Dr. Jörn Stenger, der das Gerät mit entwickelt hat. "Er wirft es hin und her und verstärkt es dabei ständig. Am Ende kommt sehr intensives und gerichtetes Licht heraus, ein Laserstrahl." Doch anders als beispielsweise ein Laserpointer sendet der Femtosekundenlaser kein einfarbiges Licht, sondern sehr viele Farben gleichzeitig in Form von sehr kurzen Pulsen aus. "Unser Laser erzeugt alle nur denkbaren Frequenzen bzw. Wellenlängen - auch weit über den optisch sichtbaren Bereich hinaus", sagt Stenger. Das Licht wandert auf seinem Weg durch die Apparatur durch eine spezielle, neuartige Mikrostrukturfaser, die das Frequenzspektrum noch einmal verbreitert, so dass es alle Regenbogenfarben enthält und hell weiß erscheint - nicht gerade das, was man von einem Laser gewohnt ist. So wird das Gerät zu einem universellen Strahlungs-Lieferanten. Millionen von Frequenzen kommen aus ihm heraus - und zwar schön gleichmäßig geordnet. Die Abstände zwischen all diesen Frequenzen sind exakt gleich groß. Betrachtet man das Ganze auf einem Diagramm, dann erweckt es den Eindruck eines Kamms mit "Zacken" aus vielen einzelnen Frequenzen.

Die gleichmäßigen Abstände machen den Femtosekunden-Kammgenerator zum universellen Übersetzer: Man vergleicht die Frequenz eines beliebigen Lasers mit der Frequenz einer Kammzacke. Dann braucht man nur noch den Abstand zu einer anderen Kammzacke zu messen und hat mit Leichtigkeit die Größenordnungen überbrückt. "Dafür brauchten wir bisher eine komplizierte Frequenzmesskette mit vielen Zwischenoszillatoren, die den ganzen Keller füllen", sagt Stenger. Arbeiten, für die bisher fünf Personen nötig waren, kann nun ein einziger Wissenschaftler erledigen. Somit senkt der Femtosekundenkammgenerator den Aufwand bei allen Frequenzmessungen drastisch: zum Beispiel, wenn es darum geht, eine Frequenz mit dem nationalen Frequenznormal, der Caesium-Atomuhr der PTB, zu vergleichen. "Solche Vergleiche mit Caesium-Genauigkeit braucht man vielleicht nicht im täglichen Leben", schränkt Stenger ein. "Aber für die Grundlagenforscher sind sie äußerst interessant." Erst kürzlich haben sie hier beide PTB-Kandidaten für die Atomuhr der Zukunft auf Herz und Nieren überprüft: das Calcium- und das Ytterbium-Frequenznormal. Die beiden stehen für den Versuch, in Zukunft die Einheiten der Sekunde und der Frequenz aus Schwingungen von Atomen (bei Calcium) oder Ionen (bei Ytterbium) abzuleiten, die nicht mehr wie bei der jetzigen Caesium-Atomuhr im Mikrowellenbereich, sondern im sichtbaren Bereich liegen.

Eine solche optische Uhr hätte den großen Vorteil, dass sie den Sekundentakt mit sehr viel größerer Genauigkeit vorgeben kann. Eine Schwierigkeit dabei wird mit dem neuen Gerät praktisch bedeutungslos: Die optischen Frequenzen müssen erst wieder in den Bereich kleinerer Frequenzen zurückgeführt werden, die beispielsweise zur Regelung vieler elektronischer Geräte benötigt werden. "Wir haben jetzt ein optisches Getriebe", sagt Stenger. Das Fahrzeug dazu - um bei diesem Bild zu bleiben - muss allerdings noch weiter entwickelt werden. Aber in einigen Jahren könnte es soweit sein: Das Zeitalter der "optischen Atomuhren" beginnt. Technische Anwendungen, die auf genaue und stabile "Zeitzeichen" angewiesen sind - wie das GPS (Global Positioning System) oder verschiedenste Untersuchungen in der Grundlagenforschung -, werden davon profitieren.


Bild:
Die Strahlung des Femtosekunden-Kammgenerators überdeckt große Teile des optischen Spektrums. Es erscheint im Bild zwar kontinuierlich, besteht aber aus einer großen Zahl dicht benachbarter Spektrallinien mit genau bekannten Frequenzen.
(Das farbige Bild kann in elektronischer Form bei der Presse- und Öffentlichkeitsarbeit der PTB bestellt werden: E-Mail: presse@ptb.de).

Weitere Informationen:
Dr. Jörn Stenger, Telefon (0531) 592-4429, E-Mail: Joern.Stenger@ptb.de
PTB-Projekt "Optische Frequenzmessung"
Physikalisch-Technische Bundesanstalt (PTB)

Dipl.-Journ. Erika Schow | idw

Weitere Berichte zu: Caesium-Atomuhr Femtosekunden-Kammgenerator Frequenz Laser

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Schnell, präzise, aber nicht kalt
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Neues Laserstrahl-Schweißverfahren des Fraunhofer IWS erlangt die Zertifizierung der DNV GL
16.05.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie