Neuer Transferbereich "Simulation und aktive Beeinflussung der Hydroakustik in flexiblen Leitungen"

Zum 1. Januar 2005 startet an der Universität Stuttgart ein neuer von der Deutschen Forschungsgemeinschaft (DFG) geförderter Transferbereich (TFB). Im Anschluss an den Ende 2004 auslaufenden Sonderforschungsbereich 412 „Rechnergestützte Modellierung und Simulation zur Analyse, Synthese und Führung verfahrenstechnischer Prozesse“ wird der Transferbereich „Simulation und aktive Beeinflussung der Hydroakustik in flexiblen Leitungen“ weiter geführt. Das Projekt wird in Kooperation zwischen dem Institut A für Mechanik und der Robert Bosch GmbH über einen Zeitraum von drei Jahren bearbeitet. Sprecher des Projektes ist der Leiter des Instituts A für Mechanik, Professor Lothar Gaul.

Die am Institut A für Mechanik und bei der Robert Bosch GmbH entwickelten innovativen Simulationswerkzeuge zur effizienten numerischen Berechnung der Schallausbreitung von Leitungssystemen, die Flüssigkeiten enthalten, sollen zur schwingungstechnischen Auslegung von Fahrzeugkomponenten genutzt, weiterentwickelt und experimentell erprobt werden. In Brems-, Einspritz- und Hydrauliksystemen moderner Fahrzeuge erzeugen die eingesetzten Pumpen und Ventile auch Hydroschall, der sich in den flexiblen Leitungen ausbreitet. Die Kopplung mit der Leitungswand führt im Automobil zu Strukturschwingungen, die mit unerwünschten Geräuschen und sogar einer Beeinträchtigung der Funktion einhergehen können. Mit Hilfe eines innovativen dreidimensionalen Berechnungsverfahrens zum gekoppelten Hydro- und Körperschall in den Leitungen sollen passive Maßnahmen zur Schallreduktion ausgelegt und an Prototypen implementiert werden. Hierzu gehören etwa Fluidschalldämpfer, Resonatoren und Dämpfungselemente. Eine Optimierung der Lagerung der Leitungen an die Karosserie wird angestrebt, um Schwingungseinwirkungen zu minimieren. Somit kann eine Verbesserung des akustischen Verhaltens erzielt werden. Aktive Maßnahmen zur Schallreduktion, beispielsweise durch Einbringen von Gegenschall in die Leitungen, sollen ebenfalls am Institut entwickelt und in Zusammenarbeit mit der Robert Bosch GmbH untersucht werden.

Derzeit befinden sich zwei der vierzehn von der DFG geförderten Transferbereiche an der Universität Stuttgart. Diese entstehen aus gut evaluierten, erfolgreichen Grundlagenprojekten, die in Sonderforschungsbereichen gefördert werden, und führen durch schnelle Umsetzung der Forschungsergebnisse im Vorfeld industrieller Anwendung.

Kontakt
Prof. Dr.-Ing. Lothar Gaul, Institut A für Mechanik
Pfaffenwaldring 9, 70569 Stuttgarz
Tel. 0711/685-6277, Fax 0711/685-6282
e-mail: L.Gaul@mecha.uni-stuttgart.de

Media Contact

Dr. Ulrich Engler idw

Weitere Informationen:

http://www.uni-stuttgart.de

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie

Dieses Fachgebiet umfasst wissenschaftliche Verfahren zur Änderung von Stoffeigenschaften (Zerkleinern, Kühlen, etc.), Stoffzusammensetzungen (Filtration, Destillation, etc.) und Stoffarten (Oxidation, Hydrierung, etc.).

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Trenntechnologie, Lasertechnologie, Messtechnik, Robotertechnik, Prüftechnik, Beschichtungsverfahren und Analyseverfahren.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer