Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Transferbereich "Simulation und aktive Beeinflussung der Hydroakustik in flexiblen Leitungen"

21.12.2004


Zum 1. Januar 2005 startet an der Universität Stuttgart ein neuer von der Deutschen Forschungsgemeinschaft (DFG) geförderter Transferbereich (TFB). Im Anschluss an den Ende 2004 auslaufenden Sonderforschungsbereich 412 "Rechnergestützte Modellierung und Simulation zur Analyse, Synthese und Führung verfahrenstechnischer Prozesse" wird der Transferbereich "Simulation und aktive Beeinflussung der Hydroakustik in flexiblen Leitungen" weiter geführt. Das Projekt wird in Kooperation zwischen dem Institut A für Mechanik und der Robert Bosch GmbH über einen Zeitraum von drei Jahren bearbeitet. Sprecher des Projektes ist der Leiter des Instituts A für Mechanik, Professor Lothar Gaul.



Die am Institut A für Mechanik und bei der Robert Bosch GmbH entwickelten innovativen Simulationswerkzeuge zur effizienten numerischen Berechnung der Schallausbreitung von Leitungssystemen, die Flüssigkeiten enthalten, sollen zur schwingungstechnischen Auslegung von Fahrzeugkomponenten genutzt, weiterentwickelt und experimentell erprobt werden. In Brems-, Einspritz- und Hydrauliksystemen moderner Fahrzeuge erzeugen die eingesetzten Pumpen und Ventile auch Hydroschall, der sich in den flexiblen Leitungen ausbreitet. Die Kopplung mit der Leitungswand führt im Automobil zu Strukturschwingungen, die mit unerwünschten Geräuschen und sogar einer Beeinträchtigung der Funktion einhergehen können. Mit Hilfe eines innovativen dreidimensionalen Berechnungsverfahrens zum gekoppelten Hydro- und Körperschall in den Leitungen sollen passive Maßnahmen zur Schallreduktion ausgelegt und an Prototypen implementiert werden. Hierzu gehören etwa Fluidschalldämpfer, Resonatoren und Dämpfungselemente. Eine Optimierung der Lagerung der Leitungen an die Karosserie wird angestrebt, um Schwingungseinwirkungen zu minimieren. Somit kann eine Verbesserung des akustischen Verhaltens erzielt werden. Aktive Maßnahmen zur Schallreduktion, beispielsweise durch Einbringen von Gegenschall in die Leitungen, sollen ebenfalls am Institut entwickelt und in Zusammenarbeit mit der Robert Bosch GmbH untersucht werden.



Derzeit befinden sich zwei der vierzehn von der DFG geförderten Transferbereiche an der Universität Stuttgart. Diese entstehen aus gut evaluierten, erfolgreichen Grundlagenprojekten, die in Sonderforschungsbereichen gefördert werden, und führen durch schnelle Umsetzung der Forschungsergebnisse im Vorfeld industrieller Anwendung.

Kontakt
Prof. Dr.-Ing. Lothar Gaul, Institut A für Mechanik
Pfaffenwaldring 9, 70569 Stuttgarz
Tel. 0711/685-6277, Fax 0711/685-6282
e-mail: L.Gaul@mecha.uni-stuttgart.de

Dr. Ulrich Engler | idw
Weitere Informationen:
http://www.uni-stuttgart.de

Weitere Berichte zu: Beeinflussung Hydroakustik Mechanik Transferbereich

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Smarte Rollstühle, vorausschauende Prothesen
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Wie Metallstrukturen effektiv helfen, Knochen zu heilen

Forscher schaffen neue Generation von Knochenimplantaten

Wissenschaftler am Julius Wolff Institut, dem Berlin-Brandenburger Centrum für Regenerative Therapien und dem Centrum für Muskuloskeletale Chirurgie der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

Tagung „Elektronikkühlung - Wärmemanagement“ vom 06. - 07.03.2018 in Essen

11.01.2018 | Veranstaltungen

Registrierung offen für Open Science Conference 2018 in Berlin

11.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Ein „intelligentes Fieberthermometer“ für Mikrochips

16.01.2018 | Informationstechnologie

Diagnostik der Zukunft - Europäisches Projekt zur Erforschung seltener Krankheiten startet

16.01.2018 | Förderungen Preise

Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

16.01.2018 | Biowissenschaften Chemie