Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erstmaliger Nachweis kleinster Wasserstoff-Tröpfchen

04.06.2004


Internationalem Forscherteam gelingt mit verbesserter Raman-Spektroskopie wichtiger Schritt auf dem Weg zu suprafluidem Wasserstoff


Schematischer Aufbau des Experiments zum Nachweis kleiner Wasserstofftröpfchen. Bei der Expansion des Gases aus einer 0,050 Millimeter Durchmesser Düse ins Vakuum entstehen kleine Cluster. Durch einen intensiven Laserlichtstrahl werden die Cluster zum Aussenden eines Raman-Spektrums angeregt. Das Spektrum im oberen Teil des Bildes besteht aus einem intensiven Maximum, gefolgt von einer Reihe kleinerer Nebenmaxima. Jeder dieser Maxima wird einem Cluster mit einer definierten Anzahl von Molekülen zugeordnet. Raman-Spektrometer: Instituto de Estructura de la Materia (CSIC).
Bild: Max-Planck-Institut für Strömungsforschung/IEM (CSIC)


H2-Cluster mit fünf Wasserstoffmolekülen. Die kleinen Hanteln einer Farbe zeigen jeweils eine von drei Momentaufnahmen der vielen möglichen Konfigurationen der fünf Moleküle eines kleinen Wasserstoff-Clusters. Die graue Kugel mit einem Durchmesser von 8.42 Angstrom (1 Angstrom=10-10 Meter) umfasst den Bereich, in dem die fünf Moleküle des Clusters mit 95 prozentiger Wahrscheinlichkeit anzutreffen sind.
Bild: Washington State University/Blume



Suprafluidität ist ein ungewöhnlicher Zustand von Flüssigkeiten, bei dem die Flüssigkeit ohne Reibung oder Widerstand fließt. Bisher konnte dieses Phänomen nur für flüssiges Helium nachgewiesen werden. Einem spanisch-deutsch -amerikanischen Forscherteam ist es jetzt gelungen, erstmals das schrittweise Wachstum winziger Cluster von bis zu acht Wasserstoffmolekülen zu beobachten (Physical Review Letters, 2. Juni 2004). Die Forscher nutzten dazu eine speziell für den Nachweis von molekularem Wasserstoff von ihnen entwickelte Spektroskopie-Technik. Obwohl die Cluster viel kälter waren als der Gefrierpunkt von Wasserstoff (-259 Grad Celsius = 14 Kelvin), bewegten sich die Moleküle immer noch frei wie in einer Flüssigkeit und nicht auf festen Positionen wie in einem Festkörper. Damit sollte die neue Technik dafür geeignet sein, die immer noch offene Frage zu beantworten, ob reiner Wasserstoff ausreichend "unterkühlt" werden kann, bis er superfluide wird.



Wasserstoff - ein ungewöhnliches Molekül

Wasserstoff ist das häufigste Element im Universum. So entsteht die Energie unserer Sonne und die der vielen anderen Sonnen und Sterne im Weltall durch die Verschmelzung von Wasserstoffkernen zu Heliumkernen. Die Wasserstoffmoleküle spielen eine entscheidende Rolle bei der Entstehung neuer Galaxien und bestimmen das chemische Verhalten des interstellaren Raums. Auf der Erde wurde in den letzten Jahren Wasserstoff als Energieträger der Zukunft propagiert. Er hat die höchste Energiedichte pro Masse, und bei seiner Verbrennung mit Sauerstoff entsteht ausschließlich sauberes Wasser. Als einfachstes aller Atome hat das Wasserstoffatom auch ganz wesentlich zur Entwicklung der Quantenphysik beigetragen (Bohrsches Atommodell).

Als das einfachste aller Moleküle mit nur zwei Elektronen hat es in der theoretischen Chemie lange Zeit als Testsystem für die Entwicklung wirksamer Algorithmen zur Berechnung chemischer Bindungen und Reaktionen gedient. Diese Vorzüge, die auf die nur zwei Elektronen im Molekül und seine geringe Masse zurückzuführen sind, stellen sich aber andererseits als schwerwiegendes Hindernis bei der Untersuchung des Wasserstoffs in seinen verschiedenen Aggregatzuständen heraus. Die Empfindlichkeit vieler Messmethoden, wie die Beugung von energetischen Elektronen oder Röntgenstrahlen, steigt mit der Anzahl der Elektronen im Element an, so dass sie auf Wasserstoff recht unempfindlich reagieren. Auch bei der theoretischen Beschreibung der Aggregatzustände bereitet die kleine Masse einige Probleme. Die meisten anderen Atome und Moleküle sind hinreichend schwer, so dass ihre quantenmechanische Unschärfe nach dem Heisenbergschen Unbestimmtheitsprinzip nur eine ganz untergeordnete Rolle spielt. Dagegen führt bei den leichten Wasserstoffmolekülen, besonders bei tiefen Temperaturen, die quantenmechanische Unschärfe dazu, dass die Teilchen keine wohldefinierten klassischen Positionen einnehmen, sondern quantenmechanisch verschwommen sind.

Bei dem etwas schwereren Helium führt dies dazu, dass es selbst bis zu den tiefsten Temperaturen nicht fest wird und unterhalb von 2,2 Kelvin in einen anderen einmaligen, kollektiven Quantenzustand übergeht, den man aufgrund des ungewöhnlichen Verhaltens den suprafluiden Zustand nennt. In dem suprafluiden Zustand zeigt das Helium viele Eigenschaften, die sonst in der Natur bei keiner anderen Flüssigkeit vorkommen. Vielleicht die markanteste davon ist die Fähigkeit, ohne Widerstand fließen zu können, ähnlich wie in einem Supraleiter, bei dem Strom ohne Widerstand fließt. Wasserstoff dagegen wird unterhalb von 13,8 Kelvin fest und zeigt ein scheinbar normales Verhalten. Bei noch tieferen Temperaturen führen die Quanteneffekte allerdings auch im festen Zustand zu einem ungewöhnlichen Verhalten. So können die Wasserstoffmoleküle, anders als bei allen anderen Stoffen, im Festkörper frei rotieren.

Unterkühlte Flüssigkeiten

1972 haben Vitali Ginzburg (Nobelpreis für Physik 2003) und sein Mitarbeiter Alexander Sobyanin vorgeschlagen, dass auch Wasserstoff in einen suprafluiden Zustand umgewandelt werden könnte, falls es gelänge, den Übergang in den festen Zustand bis zu Temperaturen von etwa 6 Kelvin aufzuhalten. Man nennt einen solchen metastabilen Zustand eine unterkühlte Flüssigkeit. Ähnliche Zustände spielen in der heutigen Physik eine sehr große Rolle. So sind die Bose-Einstein kondensierten Gase (Nobelpreis für Physik 2001) in Wirklichkeit stark unterkühlte metastabile Systeme, die nach einiger Zeit spontan in den festen Aggregatzustand übergehen.

Versuche, den suprafluiden Zustand im Wasserstoff durch eine Unterkühlung der flüssigen Phase zu erreichen, sind jedoch bis heute gescheitert. 1991 konnten David Ceperley und seine Mitarbeiter jedoch mithilfe einer aufwändigen theoretischen Simulation zeigen, dass kleine Cluster aus bis zu etwa 18 Molekülen in einen suprafluiden Zustand übergehen können. Bei so wenigen Molekülen ist die kollektive Bindung so schwach, dass der Cluster auch bei tiefen Temperaturen flüssig bleibt und nicht fest wird. Dagegen ist der suprafluide Zustand bei größeren Clustern mit etwa 33 Molekülen vernachlässigbar klein. Bereits vor vier Jahren hatten Prof. Jan Peter Toennies und seine Mitarbeiter vom Max-Planck-Institut für Strömungsforschung über das Auftreten des suprafluiden Zustands bei kleinen Clustern aus 14 bis 17 Wasserstoffmolekülen berichtet, die allerdings an einem OCS-Molekül (Carbonylsulfid) angebunden waren. Bei diesen Experimenten diente das OCS-Molekül als spektroskopische Sonde. Durch Einbetten dieser Cluster in Tröpfchen aus 4He oder eines 4He/3He-Gemisches war es den Forschern möglich, die Cluster auf eine sehr niedrige Temperatur von 0,37 bzw. 0,15 Kelvin abzukühlen und damit den Übergang in den suprafluiden Zustand auszulösen. Doch in diesem Experiment beeinflussten das OCS-Sonden-Molekül und die Heliumtröpfchenumgebung die Beobachtungen. Deshalb versucht man, Experimente an reinen Wasserstoff-Clustern ohne den Einbau eines Fremdmoleküls durchzuführen.

Erstmalige Untersuchung kleinster Wasserstoff-Cluster

Seit den 1960er Jahren ist bekannt, wie man kleine Cluster durch die Expansion eines Gases unter hohem Druck in eine Vakuumkammer experimentell erzeugen kann. Dabei entsteht ein gerichteter Strahl aus kleinen Clustern, die anschließend mit den verschiedenen physikalischen und chemischen Methoden auf ihre Eigenschaften untersucht werden können. Doch wegen der bereits erwähnten experimentellen Schwierigkeiten, die von den nur zwei Elektronen im Wasserstoff-Molekül herrühren, konnte man diese Methoden bisher nicht auf Wasserstoffmoleküle anwenden. Doch jetzt ist es einem spanisch-deutsch-amerikanischen Forscherteam um Montero (Madrid) und Toennies (Göttingen) gelungen, solche molekularen Wasserstoff-Cluster nicht nur zu erzeugen, sondern auch nachzuweisen und zu charakterisieren.

In dem neuen Experiment, ausgeführt im Instituto de Estructura de la Materia-CSIC in Madrid, konnte das Forscherteam die Empfindlichkeit einer weitverbreiteten Untersuchungsmethode, der Raman-Spektroskopie, genannt nach dem indischen Entdecker Sir Chandrasekhara Venkata Raman (Nobelpreis 1930), soweit verbessern, dass erstmals der Nachweis kleiner Wasserstoff-Cluster möglich wurde. Die verbesserte Methode ist so empfindlich, dass sogar die örtliche Konzentration der einzelnen Wasserstoff-Cluster mit einer räumlichen Auflösung von nur zwei Mikron (1 Mikron = 10-6 Meter) bestimmt werden konnte. Damit war es auch möglich, die Entstehung und Wachstum der Cluster entlang der Expansion zu verfolgen (vgl. Abb. 1). Zur Deutung der Spektren wurde das quantenmechanische Verhalten der Moleküle in den einzelnen Clustern mit einer der von Ceperley angewandten ähnlichen Methode simuliert. Diese Rechnungen bestätigten, dass die Cluster aufgrund der erwarteten Quanteneffekte stark delokalisiert (verschwommen) sind und nicht, wie man sonst erwartet hätte, in den festen Zustand übergegangen sind (vgl. Abb. 2).

Durch diese Experimente wurde erstmals der Weg zum Nachweis der Suprafluidität in reinen Wasserstoff-Clustern geebnet. Andere Untersuchungen zeigen, dass die Cluster kälter als ein Grad Kelvin sein sollten. Die Cluster müssten also hinreichend kalt sein, um suprafluide zu werden. Eine solche Temperatur kann durch die Beimischung eines Überschusses an Helium erreicht werden. Dazu wollen die Forscher auch die Empfindlichkeit und Auflösung der Spektren weiter verbessern. Erst dann können die theoretischen Vorhersagen von Ginzburg und Sobyanin sowie Ceperley und Mitarbeitern endgültig überprüft werden.

Welche Bedeutung die Suprafluidität von Wasserstoff haben könnte, erläutert Prof. Jan Peter Toennies, inzwischen emeritierter Direktor am Max-Planck-Institut für Strömungsforschung: "Obwohl es sicher viel zu früh ist, um über Anwendungen der Suprafluidität von Wasserstoff nachzudenken, könnte man darüber spekulieren, ob ein stabiler suprafluider Zustand in kaltem Wasserstoff durch eine geeignete Beimischung von schwach wechselwirkenden 3He-Atomen erreicht werden könnte. Vielleicht werden dann die Tankstellen der Zukunft durch den reibungslos in kalten unterirdischen Röhren fließenden suprafluiden Wasserstoff versorgt."

Originalveröffentlichung:

G. Tejeda, J.M. Fernández, S. Montero, D. Blume and J.P. Toennies
Raman spectroscopy of small para-H2 clusters formed in cryogenic free jets
Physical Review Letters, volume 92, issue 22, 223401, 2 June 2004

Weitere Informationen erhalten Sie von:

Prof. Jan Peter Toennies
Max-Planck-Institut für Strömungsforschung, Göttingen
Tel.: 0551 5176-600, Fax: -607
E-Mail: jtoenni@gwdg.de

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/bilderBerichteDokumente/dokumentation/pressemitteilungen/1999/pri76_99.htm

Weitere Berichte zu: Cluster Elektron Flüssigkeit Helium Molekül Temperatur Wasserstoff

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Staubarmes Recycling wertvoller Rohstoffe aus Elektronikschrott
16.11.2016 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht Mikrostrukturen mit dem Laser ätzen
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie