Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Druckstöße in Rohrleitungen verhindern: Störfälle in Industrieanlagen vermeiden

18.04.2001


Große Mengen zum Teil gefährlicher Flüssigkeiten werden in Rohrleitungen von einem Ort zum anderen transportiert. Werden dabei Ventile geschlossen und die Flüssigkeit dadurch plötzlich gebremst,
wirken große Kräfte auf die Leitung, die im Extremfall sogar zum Rohrbruch führen können. Das Forschungszentrum Rossendorf zeigt gemeinsam mit dem Fraunhofer Institut Umwelt-, Sicherheits-, Energietechnik UMSICHT zur Hannover Messe in einem eindrucksvollen Exponat, wie sich solche Druckstöße vermeiden lassen (Halle 18; Gemeinschaftsstand Forschungsland Sachsen).
Im Straßenverkehr kommt es besonders häufig zu Unfällen, wenn sich die Geschwindigkeit einer Autoschlange abrupt ändert, wenn also Autos zum Beispiel an ein Stauende heranfahren: Eine zunächst mit genügendem Abstand daher fahrende Autoschlange gerät plötzlich unter Druck. Ein ganz ähnliches Phänomen zeigt sich, wenn Flüssigkeiten in Rohrleitungen plötzlich gebremst werden. Die enormen Kräfte, die dabei auf die Leitung wirken, haben vor allem zwei Ursachen: Während hinter dem Absperrventil ein Vakuum entsteht, eine so genannte Kavitationsblase, die in sich zusammenfällt, drückt vor der Absperrarmatur eine enorme Flüssigkeitssäule auf das Ventil. Beide Phänomene äußern sich in lauten Schlägen, aus den Halterungen springenden Leitungen oder sogar Rissen in den Leitungen.
Bisher mussten solche Druckstöße in Rohrleitungen durch kostspielige zusätzliche Installationen entschärft werden. Wissenschaftler vom FZR und von UMSICHT haben mit der geeigneten Anordnung einer Rückschlagklappe hinter der eigentlichen Absperrarmatur und einer so genannten ABS-Armatur vor dem Ventil eine kostengünstige und einfache Lösung für das Problem gefunden. Die Rückschlagklappe verhindert dabei den Kollaps der Blase, während die ABS-Armatur mit Hilfe einer Scheibenbremse das Verschließen des Ventils immer dann, wenn der Druck in der Leitung durch die nachströmende Flüssigkeit zu groß wird, kontrolliert bremst. Auf diese Weise kommt die Flüssigkeit nicht mehr plötzlich, sondern ganz allmählich zum Stehen.
Info:
Das Forschungszentrum Rossendorf (FZR) ist Mitglied der Wissenschaftsgemeinschaft Gottfried-Wilhelm-Leibniz e.V. (WGL). Der WGL gehören 78 außeruniversitäre Forschungseinrichtungen an, von denen neben dem FZR noch drei weitere in Dresden ansässig sind. Die Institute der Leibniz Gemeinschaft arbeiten nachfrageorientiert und interdisziplinär; sie sind von überregionaler Bedeutung, betreiben Vorhaben im gesamtstaatlichen Interesse und werden deshalb von Bund und Ländern gemeinsam gefördert.

Kontakt:
Dr. Silke Ottow
Telefon (0351) 260-2450
Telefax (0351) 260-2700 
s.ottow@fz-rossendorf.de

Weitere Informationen finden Sie im WWW:

Dr. Frank Stäudner | idw

Weitere Berichte zu: Druckstöße FZR Industrieanlage Rohrleitung

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Smarte Rollstühle, vorausschauende Prothesen
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Wie Metallstrukturen effektiv helfen, Knochen zu heilen

Forscher schaffen neue Generation von Knochenimplantaten

Wissenschaftler am Julius Wolff Institut, dem Berlin-Brandenburger Centrum für Regenerative Therapien und dem Centrum für Muskuloskeletale Chirurgie der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

Tagung „Elektronikkühlung - Wärmemanagement“ vom 06. - 07.03.2018 in Essen

11.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal mit neuem Onlineauftritt - Lösungskompetenz für alle IT-Szenarien

16.01.2018 | Unternehmensmeldung

Die „dunkle“ Seite der Spin-Physik

16.01.2018 | Physik Astronomie

Wetteranomalien verstärken Meereisschwund

16.01.2018 | Geowissenschaften