Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Individuelle Lösungen für Filtrationsprobleme

22.10.2003


Fraunhofer ITWM simuliert und optimiert Filtrationsprozesse



Filter werden in vielen Bereichen der Industrie und des täglichen Lebens eingesetzt, um Menschen vor toxischen oder allergenen Stoffen zu schützen und die Funktionsfähigkeit von Maschinen zu erhalten. Sie müssen an ihren jeweiligen Einsatzbereich angepasst sein, d.h. Reinraumfilter müssen selbst kleinste Staubpartikel aus der Luft filtern, während Ölfilter weitaus durchlässiger sein müssen. Für jedes Filtrationsproblem existiert also eine ganz spezifische Lösung.



Auf konventionellem Weg, d.h. über das Konstruieren und Testen von Prototypen, ist diese jedoch nur sehr zeit- und kostenaufwändig zu finden, da sowohl die Filtereffizienz als auch die Aufnahmekapazität von Filtern durch das komplexe Zusammenspiel vieler Faktoren bestimmt werden; dazu zählen die physikalisch-chemischen und geometrischen Eigenschaften der Einzelfasern, die geometrische Anordnung der Fasern im Filtergewebe, die physikalisch-chemischen Eigenschaften der Flüssigkeit sowie Größe, Masse und Form der Teilchen.

Das Fraunhofer-Institut für Techno- und Wirtschaftsmathematik in Kaiserslautern hat eine Software entwickelt, die diese wichtigen Filterparameter berücksichtigt und die Partikelfiltrationseigenschaften einer Mikrostruktur virtuell ermittelt. Die Mikrostruktur, die als Eingabe in die Simulation dient, kann entweder virtuell erzeugt und nach Belieben im Computer verändert oder aus der Rekonstruktion von dreidimensionalen Computertomografien realer Filter gewonnen werden. Die Strömung durch diese Mikrostruktur wird mit Hilfe des ITWM-eigenen Tools, das sich besonders für komplexe Strukturen eignet, berechnet. Es berücksichtigt die unterschiedlichen Filtrationsmechanismen für große und kleine Teilchen und berechnet Filtereffizienzen, Partikeldurchmesser, Verteilung der Schmutzbeladung des Filters, Verstopfen des Filters durch große Teilchen, Einfluss von Adhäsionskräften auf die Schmutzablösung. Damit die Teilchen in Kontakt mit den Fasern kommen können, werden sowohl ihre Trägheit als auch der Einfluss der Brown´schen Molekularbewegung der Flüssigkeit berücksichtigt, die je nach Temperatur und Viskosität unterschiedlich sind. Somit ist es möglich, im Detail die Filtereffizienz einer Mikrostruktur in Abhängigkeit von Flüssigkeits- bzw. Lufteigenschaften und Teilchengröße zu bestimmen; insbesondere kann die Teilchengröße mit der größten Eindringtiefe virtuell in der Simulation ermittelt werden. Auch die Verteilung der Schmutzbeladung im Filter sowie das Zusetzen von Filtern kann im Detail ohne aufwändige experimentelle Tests untersucht werden.

Die ITWM-Software ist deshalb ein wesentlicher Schritt in Richtung des virtuellen Materialdesigns von Filtermedien; auf der Fachmesse "Filtech" in Düsseldorf stellt das Institut derzeit sein Tool vor.

Ilka Blauth | idw
Weitere Informationen:
http://www.itwm.fhg.de

Weitere Berichte zu: Filter Filtereffizienz Filtrationsproblem Mikrostruktur Teilchen

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Granulare Materie blitzschnell im Bild
21.09.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Sprühtrocknung: Wirkstoffe passgenau verkapseln
01.09.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops