Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erheblich mehr Laser-Leistung mit einem regenerativen Verstärker

29.04.2003


Das LZH hat einen sogenannten "regenerativen Verstärker" entwickelt, der die Pulsenergien von Ultrakurzpulslasern um einen Faktor 100.000 steigert. So werden Pulsenergien erreicht, die den Einsatz von Piko- oder Femtosekundenlasern in der Materialbearbeitung möglich machen.



Ein regenerativer Verstärker wird zur Nachverstärkung der Lichtpulse aus ultrakurzgepulsten Laserquellen, den Oszillatoren, verwendet. Diese Laserquellen arbeiten mit Pulsdauern im Piko- bzw. Femtosekundenbereich und senden typischerweise Lichtpakete mit Pulsenergien im Nanojoule-Bereich mit Repetitionsraten von 50-100 MHz aus. Die geringe Pulsenergie auf Grund der hohen Repetitionsrate ist jedoch für Anwendungen in der Materialbearbeitung nicht ausreichend.



Um die Pulsenergie um den Faktor 104 zu steigern, wird ein zweiter Laserresonator als regenerativer Verstärker eingesetzt. Zuerst wird ein einzelner Laserpuls aus dem Ultrakurzpulslaser eingekoppelt. Dieser Puls wird mit der im aktiven Kristall des zweiten Laserresonators gespeicherten Pumpenergie verstärkt und anschließend elektro-optisch wieder ausgekoppelt. Dieser Zyklus kann dann mit Wiederholraten von einigen Kilohertz durchgeführt werden. Die Repetitionsrate, die zum einen durch die verfügbaren elektro-optischen Schalter und zum anderen durch die verfügbare Pumpleistung begrenzt wird, kann durch kontinuierliche technische Weiterentwicklung weiter gesteigert werden.
Der Vorteil eines regenerativen Oszillator-Verstärkersystems liegt in seinem modularen Aufbau. Die Elemente zur Pulserzeugung befinden sich im Oszillator, während die für die Erhöhung der Pulsenergie notwendigen Elemente in den Verstärker eingebaut werden. Das heißt, dass in einem regenerativen Verstärker hohe Pulsenergien bei geringen Repetitionsraten erzeugt werden können.


Ein weiterer Vorteil von regenerativen Verstärkern ist, dass leicht bis zu mehreren hundert Durchgänge durch den Kristall realisiert werden können. Dieses ist besonders interessant für die neueren, direkt diodenpumpbaren laseraktiven Medien. die eine vergleichsweise geringe Verstärkung pro Durchgang aufweisen. Ein Vorteil bei regenerativen Verstärkern im Gegensatz zu Multipass-Verstärkern ist die variabel einstellbare Anzahl der Umläufe des Pulses im Verstärker. Hierdurch kann zum Beispiel eine höhere Puls-zu-Puls-Stabilität erreicht werden.
Das Laser Zentrum Hannover e.V. (LZH) ist eine durch Mittel des niedersächsischen Ministeriums für Wirtschaft, Arbeit und Verkehr unterstützte Forschungs- und Entwicklungseinrichtung auf dem Gebiet der Lasertechnik.

Kontakt:

Laser Zentrum Hannover e.V.
Herr Michael Botts
Hollerithallee 8
D-30419 Hannover
Tel.: +49 511 2788-151
Fax: +49 511 2788-100
E-Mail: bt@lzh.de

Michael Botts | idw
Weitere Informationen:
http://www.lzh.de

Weitere Berichte zu: Laserquelle Oszillator Pulsenergie Verstärker

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Kleben ohne Klebstoff - Schnelles stoffschlüssiges Fügen von Metall und Thermoplast
22.02.2018 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics