Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Handlicher Prototyp härtet Zahnfüllungen im Handumdrehen

03.04.2003


Alexander Uhl mit seinem Prototyp der Polymerisationslampe zur Härtung von Zahnfüllungen (Foto:FSU)


Werkstoffwissenschaftler der Universität Jena baut effektive Polymerisationslampe


Seitdem das quecksilberhaltige Amalgam in Verruf gekommen ist, haben zahnfarbene Kunststofffüllungen ihren Einzug in die Zahnarztpraxen und Münder gehalten. Die weiche Masse wird im Mund des Patienten mit Hilfe von blauem Licht gehärtet. Angeregt durch dieses Licht bestimmter Wellenlänge verbinden sich die Einzelkomponenten im Füllungskunststoff zu Polymeren. Dazu griffen Zahnärzte bisher zu Halogenlampen mit vorgeschalteten Filtern. Die stromfressenden, mit lautstarker Kühlung betriebenen, kurzlebigen Ungetüme sollen künftig energiesparenden, leisen, langlebigen, leuchtstarken Lampen auf der Basis von Halbleiterdioden (LED = Licht Emittierende Dioden) Platz machen. Am Institut für Materialwissenschaft und Werkstofftechnologie der Friedrich-Schiller-Universität Jena ist jetzt eine der stärksten blauen LED-Lampen zur Härtung von Zahnfüllungen gebaut worden. Die wissenschaftlichen Hintergründe sind kürzlich gleich zweimal im renommierten Journal of Biomaterials (Vol. 24 (2003) S. 1787-1795/S. 1809-1820) publiziert worden.

"Auf dem Gebiet der blauen LED-Lampen sind wir weltweit führend", sagt Prof. Dr. Klaus Jandt und verweist auf die Publikationsliste der Jenaer Wissenschaftler. "Eine Schwäche der Dioden war, dass sie zwar sehr lange hielten aber nicht stark genug strahlten, um die gewünschte schnelle Härtung zu erzielen", erklärt der Jenaer Lehrstuhlinhaber für Materialwissenschaft. Gemeinsam mit Kollegen aus Bristol, Großbritannien, ordnete man deshalb anfänglich mehrere Dioden in Ringen wie Tortenstücke nebeneinander an. "Die Versuchsgeräte mit handgefeilten Dioden erwiesen sich als ungeeignet für die industrielle Massenfertigung", so Jandt.


Neuartige Stoffkombinationen in den Dioden und die Entwicklungen von Miniatur-Dioden auf Chips führten zu dem jetzigen Prototypen. Das Jenaer Gerät, das auf den ersten Blick wie die chromfarbene Luxusvariante einer elektrischen Zahnbürste anmutet, könnte industriell gefertigt werden. Dem Doktoranden Alexander Uhl gelang es, einen Spezial-Chip mit 16 Indium-Gallium-Nitrit-Dioden auf einer Fläche von 4 mm so im Kopf seines Prototypen zu platzieren, dass er eine der hellsten LED-Lampen ihrer Art schuf. Durch die sinnvolle Anordnung der Bauelemente und einen optischen Kniff gelangte Jandts Mitarbeiter zu einem handlichen Gerät, das dem Zahnarzt jederzeit griffbereit in einer kleinen Akkustation zur Verfügung steht. Ohne Kabel und ohne laute Kühlung ermöglicht es den punktgenauen effektiven "Blaulicht-Einsatz" in der Mundhöhle, der die Füllungen besser aushärten und so potenziell länger halten lässt. Aber nicht nur die Füllungen, sondern auch die Lampen selbst sind langlebiger. "Nach 100 Einsatzstunden müssen die Halogenlampen in den gängigen Modellen ausgetauscht werden", erklärt Prof. Jandt. Der LED-Kollege hingegen härtet über 10.000 Stunden lang zuverlässig. "Wir haben eine Lampe entwickelt, die so wie sie ist in einer klinischen Studie getestet werden kann", sagt Alexander Uhl. "Wir hoffen, dass die Studien, die gemeinsam mit den Zahnmedizinern der Universität Jena durchgeführt werden, noch in diesem Sommer starten können", so der Entwickler.

Kontakt:
Institut für Materialwissenschaft und Werkstofftechnologie
Universität Jena
Löbdergraben 32, 07743 Jena
Tel.: 03641 - 947730 oder 947736
Prof. Dr. Klaus Jandt
E-Mail: k.jandt@uni-jena.de
Alexander Uhl
E-Mail: alexander.uhl@

Monika Paschwitz | idw
Weitere Informationen:
http://www.uni-jena.de

Weitere Berichte zu: Diode Materialwissenschaft Zahnfüllung

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Kleben ohne Klebstoff - Schnelles stoffschlüssiges Fügen von Metall und Thermoplast
22.02.2018 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics