Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schreiben mit Licht

05.07.2002


Deutsch-griechisches Forscherteam erzeugt mit schwach fokussiertem Laserlicht erstmals Linien und Punkte in transparenten Polymerlösungen


Einen neuen Effekt, der bei der Interaktion von Laserlicht und Materie auftritt und für holographische, mikrooptische und nanotechnologische Anwendungen von Nutzen sein könnte, haben griechische und deutsche Forscher erstmals beobachtet (Science, 5. Juli 2002). Während lichtmikroskopische Abbildungen bereits eine sehr lange Geschichte haben, ist die Möglichkeit der Fixierung und Verschiebung von Mikropartikeln mit Licht erst relativ jung und hat neue Experimente im Mikrometerbereich ermöglicht. Um die Partikel mit so genannten "optischen Pinzetten" festzuhalten, war bisher eine starke Fokussierung des Lichts erforderlich, um die notwendigen Kräfte aufzubringen. Jetzt berichten die Forscher aus den Max-Planck-Instituten für Polymerforschung und für Kolloid- und Grenzflächenforschung sowie von der Universität Athen und dem FORTH-Institute of Electronic Structure and Laser in Heraklion/Kreta, dass man in Polymerlösungen bereits mit schwach fokussiertem Laserlicht die lokale Konzentration erhöhen und vorübergehend Muster aus Punkten und Linien erzeugen kann. Die Forscher haben bereits mehrere Voraussetzungen für dieses "Schreiben" mit Licht identifiziert: Die Polymere müssen über Doppelbindungen im Polymerrückgrat verfügen und in ausreichend langen Ketten vorliegen, um größere Netzwerke bilden zu können. Darüber hinaus muss ihr Brechungsindex höher als der des Lösungsmittels sein. Die Muster können in wenigen Sekunden erzeugt werden und bleiben mehre Tage bestehen, bevor sie sich langsam wieder auflösen.


Optische Verfahren spielen bei der Untersuchung von Materialien eine wichtige Rolle. So reichen schon geringe Lichtleistungen aus, um zum Beispiel eine mikroskopische Abbildung zu erzeugen. Soll dagegen ein Material mit Licht bearbeitet, also in seiner Struktur verändert werden, erfordert das - abgesehen von photochemischen oder photothermischen Einflüssen - üblicherweise bedeutend höhere Lichtleistungen oder eine starke Fokussierung der dazu verwendeten Lichtquelle (Laser). Das deutsch-griechische Forscherteam hat nun beobachtet, dass in bestimmten Polymerlösungen schon bei schwachem Licht mit geringer Fokussierung eine innere Reorganisation und Aggregation von Polymerketten auftritt.


Aus dem Laboralltag war schon seit längerem bekannt, dass sich bei Lichtstreuuntersuchungen mit Lösungen aus Block-/Copolymeren aus Polystyrol und Polyisopren der beleuchtende Laserstrahl immer weiter aufweitet und letztlich verschwindet.

"Abb. 1: Aufweitung des durch eine Polyisoprenlösung transmittierten Laserstrahls. Bei der Transmission durch die inhomogene Lösung verwandelt sich das ursprüngliche Gaußprofil in ein reich strukturiertes Interferenzmuster."
"Grafik: FORTH-Institute of Electronic Structure and Laser, Heraklion, Kreta"



Zur genaueren Untersuchung haben die Forscher die Ursache der Strahlaufweitung für Homopolymerlösungen in einem Mikroskopaufbau senkrecht zum Laserstrahl im Detail sichtbar gemacht. Hierbei stellten sie überraschend fest, dass sich mit dem Laserstrahl Punktreihen oder linienartige Fäden mit einigen Mikrometer Durchmesser in die Lösung schreiben lassen, d.h. die Polymerkonzentration an diesen Stellen stark ansteigt. Diese Fäden wiederum verhalten sich dabei wie Fasern eines Lichtleiters und führen auf diese Weise zu einer Selbstverstärkung des Effekts.

Die mit dem Laserstrahl bewirkte Materialverschiebung erinnert an eine "optische Pinzette", die mit einem stark fokussierten Laserstrahl zum Beispiel einzelne Kolloidteilchen festhalten kann. Dabei muss die Haltekraft der Pinzette ausreichend groß sein, damit das Teilchen nicht durch die Wärmebewegung wieder entkommt. Überschlagsrechnungen für die jetzt untersuchten Polymerlösungen ergaben jedoch, dass bei der geringen Fokussierung des Lasers die Haltekraft für ein Monomer um acht Größenordnungen kleiner ist als bei der Fixierung mit einer optischen Pinzette. Die Ursache für diesen geringeren Kraftaufwand sehen die Wissenschaftler in der Anordnung der Monomere in Polymerketten.

Tatsächlich konnten sie eine direkte Korrelation zwischen dem Auftreten des "Schreib-Effekts" und der Konzentration der Polymere in Lösung nachweisen. Während Polymere in stark verdünnten Lösungen als Einzelketten vorliegen, fangen sie bei höherer Konzentration an, sich zu überlappen. Steigt der Polymeranteil in der Lösung noch weiter an, bildet sich durch Verschlaufung ein Polymer-Netzwerk, das sich wie Gummi verhält: Wird an einer Stelle gezogen, wirkt die Kraft über die gesamte Probe und es verschieben sich auch die Makromoleküle an anderen Stellen im Netzwerk. Der Konzentrationsgrad, von dem ab sich eine Polymerlösung ähnlich wie Gummi verhält, bildet offensichtlich die untere Grenze für das Auftreten des "Schreib- Effekts". Die Makromoleküle reagieren also nicht einzeln auf den Einfluß des Lasers, sondern erst kollektiv als Netzwerk.

"Abb. 2: Punktreihe (oben) oder Linie (unten) die in Polyisoprenlösungen unterschiedlicher Konzentration geschrieben wurden. Der Maßstab gilt für beide Bilder. Der dunkle Bereich in der Mitte der Linie ist durch das Abbildungsverfahren bedingt. "
"Grafik: FORTH-Institute of Electronic Structure and Laser, Heraklion, Kreta "



Beim Test verschiedener Polymere fanden die Forscher ein weiteres Kriterium für das Auftreten des neuen Effekts: Er tritt auf bei Makromolekülen mit Doppelbindungen in der Hauptkette, wie Polyisopren, nicht aber bei Polymeren ohne Doppelbindungen in der Hauptkette, wie Polystyrol. Dasselbe Phänomen trat auch bei Polybutadien auf, ein Polymer, dass in zwei Formen hergestellt werden kann, mit Doppelbindungen in der Hauptkette oder nur in den Seitenketten. Auch hier trat die Strahlaufweitung nur bei der Form mit Doppelbindungen in der Hauptkette auf.

Dr.Reinhard Sigel, Erstautor der "Science"-Studie, meint zu dem neuentdeckten Effekt: "Heute können in der Polymerchemie bereits Substanzen mit den unterschiedlichsten Eigenschaften maßgeschneidert werden. Die jetzt entdeckte Möglichkeit, diese Substanzen mit einem Laser schwacher Intensität effizient und gezielt beeinflussen zu können, eröffnet viele Perspektiven für neue mikrostrukturierte Materialien und deren Anwendung."

Weitere Informationen erhalten Sie von:

Prof. Dr. Georg Fytas
Max-Planck-Institut für Polymerforschung, Mainz
Tel.: +49 6131 379 0
Fax: +49 6131 379 100
E-Mail: fytas@mpip-mainz.mpg.de

bzw.

FO.R.T.H.-Institute of Electronic Structure and Laser
PO Box 1527
71110 Heraklion, Crete, Greece
E-Mail: fytas@iesl.forth.gr
Tel.: +30 81 391468
Fax: +30 81 391305

Dr. Reinhard Sigel
Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Golm
Tel.: +49 331 567 9544
Fax: +49 331 567 9544
E-Mail: sigel@mpikg-golm.mpg.de

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpip-mainz.mpg.de/index_de.html
http://www.mpikg-golm.mpg.de/

Weitere Berichte zu: Doppelbindung Laser Laserstrahl Polymer Polymerlösung

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Neues energieeffizientes Verfahren zur Herstellung von Kohlenstofffasern
13.03.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Dresdner Forscher drucken die Welt von Morgen
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie