Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Technologische Highlights auf dem VLSI Symposium 2003

16.06.2003


An der diesjährigen VLSI Technologies und Circuits-Konferenz hat sich Infineon mit insgesamt fünf Vorträgen beteiligt, mit denen Ergebnisse der Weiterentwicklung von fortschrittlichen Halbleitern hervorgehoben wurden.


Neue Ergebnisse der erfolgreichen Entwicklung von zwei nichtflüchtigen Speichertechniken FeRAM (Ferro-electric Random Access Memory) und MRAM (Magnetoresistive Random Access Memory) wurden in drei Vorträgen vorgestellt. Zwei andere Vorträge befassten sich mit der Integration alternativer High-k-Dielektrika in neue Prozess-Technologien.

Die Titel und Kurzzusammenfassungen der Vorträge sind im Folgenden aufgelistet:

Paper 13-1 - Bitline/Plateline Reference-Level-Precharge Scheme for High-Density ChainFeRAM


Infineon, Toshiba
Dieser Vortrag beschreibt wesentliche Schaltungsmerkmale für die weitere Optimierung der Chain-FeRAM-Chip-Architektur. Diese Architektur erlaubt die Realisierung von hohen Speicherdichten auf sehr kleiner Chipfläche bei extrem geringer Stand-by-Leistungsaufnahme. Die präsentierten neuen Schaltungsmerkmale führen zu deutlich höheren Signalabständen, höheren Ausbeuten und verbesserter Zuverlässigkeit. Dies wird u.a. durch ein Leitungstreiber-Schema mit Three-Level-Plate-Struktur zur Reduzierung der Stressbelastungen des Gatter-Oxids und durch ein kapazitives Abgleich-Schema für höhere Signalabstände erreicht. Die FeRAM-Schaltungsstrukturen wurden in einen 32-Mbit-Chain-FeRAM-Chip implementiert, einer gemeinsamen Entwicklung von Toshiba Corp., Japan, und Infineon Technologies.

Paper 2-4 – A 0.18 µm Logic-based MRAM Technology for High Performance Nonvolatile Memory Application

Infineon, IBM
In diesem Vortrag wurde die Fertigung eines 128-Kbit-MRAM-Speicherchips mit der weltweit kleinsten MRAM-Speicherzelle von nur 1,4 Quadratmikrometer präsentiert. Der nichtflüchtige Speicherchip wurde in einem 0,18-µm-Standard-Logikprozess mit drei Kupfer-Metallisierungsebenen und einer 1T1MTJ (1 Transistor-/1 Magnetic-Tunnel-Junction-Architektur) gefertigt. Fortgesetzte Untersuchungen an dem Test-Array zeigten eine ausgezeichnete Lebensdauer – auch nach 630 Millionen Schreibzyklen konnten keine Qualitätsverluste festgestellt werden.

Paper 16-4 - A High-Speed 128Kbit MRAM Core for Future Universal Memory Applications

Infineon, IBM
Dieser Vortrag stellte eine schnelle, symmetrische Sensing-Architektur mit komplementären Referenzzellen und konfigurierbaren Last-Schaltungen vor. Die Extrapolation der Messergebnisse an dem oben beschriebenen 128-Kbit-Testchip bzw. den Testaufbauten lässt sehr schnelle Random-Zugriffszeiten erwarten: 5 ns für einen Lese-Zugriff und weniger als 5 ns für einen Schreib-Impuls. Diese Ergebnisse unterstreichen das hohe Leistungsvermögen der 1T1MTJ-Architektur der MRAM-Technologie.

Paper 12A-1 – Direct Measurement of the Inversion Charge in MOSFETs; Application to Mobility Extraction in Alternative Gate Dielectrics

Infineon, IBM, IMEC, KU Leuven, International Sematech, Institut für Halbleitertechnik TU-Darmstadt
Die weitere Skalierung von MOSFETs mit alternativen Gate-Dielektrika ist durch eine deutliche Reduzierung der Ladungsträgerbeweglichkeit gekennzeichnet. Konventionelle Messtechniken zur Erfassung der Ladungsträgerbeweglichkeit und zur Untersuchung der Ursachen sind nicht auf FETs (Feld Effekt Transistoren) mit alternativen Gate-Dielektrika anwendbar, da die Messungen durch starken Ladungseinfang beeinträchtigt werden. Der Vortrag beschreibt das so genannte Inversion Charge Pumping (ICP) als eine neue alternative Messmethode, um die „echte” Ladungsdichte im Inversionskanal bei n-Kanal-FETs zu bestimmen. Dieses Verfahren wurde eingesetzt, um die Ladungsträgerdichte in FETs mit konventionellen und Dual-Layer-Gate-Dielektrika (SiO2/HfO2) exakt zu messen.
Dabei konnte gezeigt werden, dass der Ladungseinfang (Trapping) und die Netto-Ladungsdichte in den n-Kanal-MOSFETs nicht die primäre Ursache für die starke Abnahme der Ladungsträgerbeweglichkeit sind. Die neue Messmethode und die entsprechenden Messergebnisse bezüglich Ladungsträgerbeweglichkeit und -einfang stellen einen wesentlichen Schritt bei der Integration von neuen alternativen Dielektrika in künftige CMOS-Chip-Technologien dar.

Paper 12A-3 – Dynamics of Threshold Voltage Instability in Stacked High-k Dielectrics: Role of the Interfacial Oxide

Infineon, IBM, IMEC, International Sematech, KU Leuven
Um die hohen Anforderungen bei der Miniaturisierung künftiger Chip-Generationen erfüllen zu können, wird mit Nachdruck an der Erforschung und Entwicklung alternativer Gate-Dielektrika als Ersatz für das konventionelle Silizium-Oxid gearbeitet. Bisher konnte gezeigt werden, dass die beobachtete Instabilität der Schwellspannung bei Dual-Layer-Gate-Anordnungen (SiO2/HfO2) auf bestehende Substrat-Defekte im Gate-Aufbau und damit zusammenhängende Lade- bzw. Entladungsvorgänge zurückgeführt werden können. Der Vortrag zeigt, dass die Instabilität der Schwellspannung von Gate-Dielektrika aus Hafnium-Oxid (HfO2) durch dynamische Effekte beim Elektroneneinfang bedingt wird, der durch HfO2 -Substrat-Defekte bestimmt wird. Aus diesem Grund hängt die gemessene Höhe der Instabilität ganz wesentlich vom Gate-Leckstrom, dem elektrischen Feld, der Gitter-Temperatur und dem Zeitverhalten der benutzen Messanordnung ab. Darüber hinaus wurde gezeigt, dass die Dicke des Grenzflächenoxids ebenfalls die Mechanismen der Lade- und Entladungsvorgänge durch die HfO2 -Substrat-Defekte beeinflusst. Wird die Dicke des Grenzflächenoxids reduziert, dann trägt der Ladungseinfang durch den elektronischen Tunneleffekt ebenfalls zu den Instabilitätseffekten bei. Der Substrat-bedingte Ladungseinfang der HfO2-Layer muss also gesteuert werden, damit die Instabilität der Schwellenspannung bei der Integration von hochisolierenden Dielektrika in künftige CMOS-Prozesse nicht zu Problemen führt.

Reiner Schoenrock | Infineon
Weitere Informationen:
http://www.infineon.com

Weitere Berichte zu: Ladungsträgerbeweglichkeit

Weitere Nachrichten aus der Kategorie Veranstaltungsnachrichten:

nachricht Von festen Körpern und Philosophen
23.02.2018 | Deutsche Physikalische Gesellschaft (DPG)

nachricht Spannungsfeld Elektromobilität
23.02.2018 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Veranstaltungsnachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics