Der Sonnenwind sorgte für den Verlust der Mars-Atmosphäre

Mechanismus der Erosion planetarer Ionen an der tagseitigen Ionosphäre von Mars: Planetare Ionen werden in der Region zwischen der Photo-Elektronen Grenze (PEB) und der Grenze der induzierten Magnetosphäre (IMB) beschleunigt und Strom-abwärts transportiert. Bild: ASPERA-Kooperation

Messungen von „Mars Express“ belegen, dass der Sonnenwind tief in die Ionosphäre von Mars eindringt und wesentlich für den Verlust seiner Atmosphäre verantwortlich ist

Eine Hauptfrage der Marsforschung ist, wie der Planet seine dichte Atmosphäre verloren hat, die vermutlich noch in den ersten 500 Millionen Jahre nach Entstehung des Planeten existiert hat. Ein Mechanismus, der hierbei eine große Rolle spielen könnte, ist die Erosion durch Ladungs- und Energieaustausch mit Ionen des Sonnenwindes. Messungen des ASPERA 3-Instruments an Bord der europäischen Raumsonde „Mars Express“, an dem auch Wissenschaftler des Max-Planck-Instituts für Sonnensystemforschung in Katlenburg-Lindau beteiligt sind, zeigen, dass Sonnenwind-Ionen tief in die Ionosphäre von Mars vordringen und dort zum Verlust planetarer Sauerstoff-Ionen ins Weltall führen. Aus der Auswertung der Daten erhofft man sich genauere Informationen darüber, auf welche Weise der Planet in den vergangenen Jahrmilliarden seine Atmosphäre sowie seine vermuteten Urozeane verloren hat (Science, 24. September 2004).

Vor vier Milliarden Jahren besaß der Mars – wie die Erde – eine dichte Atmosphäre. Inzwischen hat unser Nachbarplanet seine Gashülle fast komplett verloren. Er besitzt kein Magnetfeld, so dass der energiereiche Sonnenwind ungehindert auf seine Atmosphäre einwirken kann und auf diese Weise möglicherweise für den Verlust der Atmosphäre gesorgt hat. Hingegen schützt das irdische Magnetfeld die Erdatmosphäre, indem elektrisch geladene Teilchen des Sonnenwindes gefangen und um die Erde herum geleitet werden.

Ziel von ASPERA, dem „Analyzer of Space Plasma and Energetic Atoms“, an Bord von „Mars Express“, ist es, die Wechselwirklungen zwischen dem Sonnenwind und der tagseitigen Ionosphäre des Mars zu untersuchen und speziell die Menge und Masse der Ionen sowie die Energie von Elektronen und Ionen in jener marsnahen Region zu messen, in der die Interaktion des Sonnenwindes mit der Atmosphäre stattfindet. Eine erste Auswertung hat nun ergeben, dass unterhalb einer gewissen Grenzhöhe, der so genannten induzierten Magnetosphärengrenze (IMB), planetare Ionen das Plasma dominieren, während man unterhalb der so genannten Photoelektronen-Grenze (PEB) ionosphärische Elektronen beobachtet.

Diese Messungen zeigen, dass die induzierte Magnetosphärengrenze für einen Teil der Sonnenwind-Ionen durchlässig ist. Damit ist die Region zwischen beiden Grenzen von besonderer Wichtigkeit, um die Wechselwirkung zwischen Sonnenwind und planetarem Plasma besser verstehen zu können. Neu ist nun, dass Sonnenwind-Ionen (H+ und He++) bis zu einer Höhe von 270 km in die Ionosphäre vordringen und dort einen Abfluss beschleunigter planetarer Sauerstoff-Ionen (O+) verursachen. Dies geschieht schon bei geringeren Höhen und damit effektiver als bisher vermutet.

Media Contact

Dr. Andreas Trepte idw

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer