Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

TU-Dortmund-Physikern gelingt ein revolutionär tiefer Blick in den Hochenergie-Kosmos

21.12.2015

Einem internationalen Forscherteam, an dem auch Wissenschaftlerinnen und Wissenschaftler der TU Dortmund beteiligt sind, ist jetzt die Entdeckung einer der am weitesten entfernten Quellen von hochenergetischer Gammastrahlung gelungen. Der aktive Galaxienkern mit der Katalogbezeichnung PKS 1441+25 wurde mit dem MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov) Teleskopsystem auf der Kanareninsel La Palma, mit den VERITAS Teleskopen in den USA und mit dem Satellitenobservatorium Fermi-LAT beobachtet. Die Ergebnisse des Forscherteams erscheinen in dieser Woche in der angesehenen Fachzeitschrift „Astrophysical Journal Letters“.

PKS 1441+25 im Sternbild Bootes (der Bärenhüter) ist einer der beiden am weitesten entfernten aktiven Galaxienkerne, die jemals im höchstenergetischen Gammastrahlenbereich – bei Energien, die viele Milliarden Mal größer sind als die des sichtbaren Lichts – beobachtet werden konnten.


Künstlerische Darstellung eines Flachspektrum-Radioquasars.

Bild: NASA

Der Nachweis so weit entfernter Objekte in diesem Energiebereich ist unter anderem deshalb so schwierig, weil höchstenergetische Gammastrahlung auf ihrem Milliarden Lichtjahre langen Weg durch das Universum durch Wechselwirkungen mit niederenergetischen Photonen absorbiert wird.

Diese niederenergetischen Photonen erfüllen das Universum in Form eines diffusen extragalaktischen Hintergrundlichtes, das sozusagen den summarischen Fingerabdruck der Entstehungs- und Entwicklungsgeschichte der Sterne und Galaxien im Kosmos bildet. Untersuchungen der Gammastrahlung von Objekten wie PKS 1441+25 ermöglichen indirekt so auch einen Blick weit zurück in eine Zeit, in der die Galaxien erst die Hälfte ihres heutigen Alters hatten.

Als im April 2015 das Large Area Telescope (LAT) auf dem Fermi-Satelliten der NASA eine Phase erhöhter Aktivität bei PKS 1441+25 registrierte, zögerten die Wissenschaftler der MAGIC Kollaboration, an dem die TU beteiligt ist, nicht lange und richteten ihre Teleskope ebenfalls auf das Objekt.

„Die moderne Astrophysik ist heute mehr als je zuvor darauf angewiesen, schnell auf besondere Ereignisse reagieren zu können und mit vielen verschiedenen Instrumenten Strahlung aus unterschiedlichen Wellenlängenbereichen zu registrieren. Bei MAGIC sind wir ideal auf solche Kampagnen vorbereitet. Die erfolgreichen Beobachtungen von PKS 1441+25 unterstreichen das in eindrucksvoller Weise“, erklärt Dr. Elina Lindfors (Universität Turku, Finnland), die bei MAGIC für die Gammastrahlenbeobachtungen von PKS 1441+25 verantwortlich zeichnete.

Abgesehen von der großen Entfernung sind die Beobachtungen von PKS 1441+25 auch deshalb von großem Interesse für die Astronomen, weil es sich hier um einen aktiven Galaxienkern aus der Klasse der sogenannten „Flachspektrum-Radioquasare“ (FSRQs) handelt. Die enormen Leuchtkräfte der FSRQs gehen auf Schwarze Löcher in ihren Zentren zurück, die mehrere hundert Millionen Mal so massereich wie unsere Sonne sein können.

Auf Grund ihrer gewaltigen gravitativen Anziehungskraft bildet sich ein stetiger Strom von Materie, die auf das Schwarze Loch zustürzt. Dabei werden einige Teilchen zu enormen Energien beschleunigt und verursachen die Hochenergie-Emission dieser kosmischen Gammastrahlenquellen.

Die FSRQs gelten insbesondere als mögliche Quellen der kosmischen Hochenergie-Neutrinos, die kürzlich unter maßgeblicher Beteiligung der Arbeitsgruppe um Prof. Wolfgang Rhode (TU Dortmund) mit dem IceCube Experiment am Südpol nachgewiesenen wurden.

„Um den physikalischen Bedingungen, die in diesen kosmischen Teilchenbeschleunigern herrschen und die zur Entstehung von höchstenergetischer Gammastrahlung und Neutrinos führen, auf den Grund zu gehen, müssen wir die gewaltigen Datenströme, die von unseren Teleskopen produziert werden, ressourcenschonend auswerten. Genau an dieser Schnittstelle zwischen Experiment und Big Data Science können wir hier an der TU Dortmund auch über den Sonderforschungsbereich 876 entscheidende Beiträge liefern”, so Prof. Rhode.

Die Forscher planen nun weitere Untersuchungen von PKS 1441+25 und ähnlichen Objekten im Rahmen der kürzlich gegründeten regionalen Forschungszentren RAPP (Ruhr Astroparticle-Plasma Physics Center; Ruhr-Universität Bochum, TU Dortmund und Universität Duisburg-Essen) und WECAP (Würzburg-Erlangen Center for Astroparticle Physics; Universitäten Erlangen und Würzburg). Dabei sollen neben den MAGIC Teleskopen insbesondere auch die Neutrinodetektoren IceCube am Südpol und ANTARES/KM3NeT im Mittelmeer zum Einsatz kommen.

Zusätzliche Informationen:
Das MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov) Teleskopsystem befindet sich auf etwa 2200 Meter über dem Meeresspiegel als Teil der Europäischen Nordsternwarte am Roque de los Muchachos auf der Kanareninsel La Palma. Die beiden Teleskope des Systems haben jeweils einen Hauptspiegeldurchmesser von 17 Metern und messen mit weltweit einzigartiger Empfindlichkeit im Energiebereich zwischen 25 GeV und 50 TeV. Der Nachweis der Gammastrahlung geschieht dabei mittels der abbildenden Luftschauer-Cherenkovmethode über die Beobachtung von Wechselwirkungen der höchstenergetischen Teilchen in der Erdatmosphäre. MAGIC wird in einer internationalen Kollaboration von etwa 160 Wissenschaftlerinnen und Wissenschaftlern von Instituten aus Deutschland, Spanien, Italien, der Schweiz, Polen, Finnland, Bulgarien, Kroatien, Indien und Japan betrieben.

Weitere Informationen:

https://wwwmagic.mpp.mpg.de/
http://iopscience.iop.org/article/10.1088/2041-8205/815/2/L23
https://www.youtube.com/watch?v=AJh7fq7tYfg&feature=youtu.be

Martin Rothenberg | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Energiebereich Experiment Galaxien Gammastrahlung IceCube MAGIC PKS Teleskope Wechselwirkungen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Atome rennen sehen - Phasenübergang live beobachtet
30.03.2017 | Universität Duisburg-Essen

nachricht Flipper auf atomarem Niveau
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE