Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Teilchen, Wellen und Ameisen

25.11.2014

Tiere, die nach Futter suchen, oder Elektronen, die sich durch Metall bewegen: Zwischen verblüffend unterschiedlichen Phänomenen wurden an der TU Wien überraschende Gemeinsamkeiten gefunden.

Ein Betrunkener torkelt ziellos auf einen Platz, auf dem Straßenlaternen stehen. Ab und zu wird er an eine Laterne stoßen, seine Richtung ändern müssen und weitertorkeln. Hängt seine Verweildauer auf diesem Platz von der Anzahl der Straßenlaternen pro Fläche ab? Die überraschende Antwort ist: Nein.


Ameisen und Wellen - gibt es da Ähnlichkeiten?

TU Wien / Fir0002/Flagstaffotos, GNU Free Documentation Licence 1.2

Egal ob auf jedem Quadratmeter eine Straßenlaterne im Weg steht, oder ob die Abstände zwischen ihnen groß sind – der Betrunkene braucht auf seiner zufälligen Wanderung vom Betreten bis zum Verlassen des Platzes im Durchschnitt immer gleich lange.

Berechnungen der TU Wien zeigen nun, dass diese Konstanz der Verweildauer ein universelles Phänomen ist. Transportphänomene aus ganz unterschiedlichen Bereichen lassen sich so erklären – von der Wanderung von Ameisen bis zu Lichtwellen, die ihren Weg durch diffuses Milchglas suchen.

Die Ergebnisse wurden gemeinsam mit Forschungteams aus Frankreich erarbeitet (Institut Langevin und Laboratoire Kastler-Brossel, Paris) und wurden nun im Fachjournal PNAS veröffentlicht.

Und wenn ich auch wanderte im finsteren Glas …

Prof. Stefan Rotter (Institut für Theoretische Physik, TU Wien) untersucht mit seinem Team, wie sich Wellen in einem ungeordneten Medium ausbreiten. Das können Lichtwellen sein, die durch eine getönte Fensterscheibe dringen, oder auch Quantenteilchen, die sich wellenartig durch ein Material mit einzelnen Störstellen bewegen.

„Solche Transportphänomene charakterisiert man normalerweise mit Hilfe der sogenannten mittleren freien Weglänge“, erklärt Rotter. Das ist die Strecke, die sich eine Welle oder ein Teilchen typischerweise frei bewegen kann, bis sie auf das nächste Hindernis trifft – also der durchschnittliche Abstand zwischen zwei Straßenlaternen im Fall des torkelnden Wanderers, oder die Distanz zwischen zwei mikroskopischen Partikeln im Glas, an denen eine Lichtwelle gestreut wird.

Die Verweildauer ist immer gleich

Von dieser mittleren freien Weglänge hängen viele wichtige physikalische Größen ab – zum Beispiel legt sie fest, welcher Anteil des Lichts von einer trüben Glasscheibe durchgelassen wird. „Man kann auch berechnen, wie viel Zeit der durchgelassene und der reflektierte Anteil des Lichts jeweils im Glas verbringen. Auch diese Größen, die sogenannte Transmissionszeit und die Reflektionszeit, hängen stark von der mittleren freien Weglänge ab“, erklärt Philipp Ambichl, Doktorand in der Gruppe Rotter und Ko-Autor der Studie.

Betrachtet man diese beiden Anteile aber gemeinsam um insgesamt die durchschnittliche Verweildauer des Lichts im Glas zu berechnen, dann heben sich diese Abhängigkeiten auf. Im Ergebnis kommt die freie Weglänge nicht mehr vor. Licht hält sich also in einer sehr trüben Glasplatte genauso lange auf wie in einer beinahe durchsichtigen.

Beim Betrunkenen und den Straßenlaternen ist es genauso: Stehen viele Laternen im Weg, steigt die Wahrscheinlichkeit, dass er gleich zu Beginn irgendwo anstößt, gleich umkehrt und gar nicht weit in den Platz vordringt – dann ist die Aufenthaltsdauer klein. Wege, die ihn auf die andere Seite des Platzes führen, dauern umso länger, je mehr Straßenlaternen es gibt. Insgesamt heben sich die beiden Effekte auf, sodass die zu erwartende Verweildauer auf dem Platz immer gleich ist.

„Verblüffend ist, dass diese Erkenntnis auf ganz unterschiedliche Systeme zutrifft“, sagt Philipp Ambichl. „Sie trifft etwa auf Kugeln zu, die man über ein Brett rollen lässt, in dem zufällig verteilte Nägel eingeschlagen sind. Es gilt aber auch für Elektronen-Wellen, die sich durch ein ungeordnetes Material bewegen, wo das Elektron zum Beispiel an einzelnen Atomen gestreut wird.“

Sogar in der Biologie lässt sich das Phänomen beobachten: Wenn Ameisen über eine Fläche spazieren, kann man das auch als Zufalls-Wanderung beschreiben und mathematisch abschätzen, wie lange sie auf dieser Fläche verweilen werden. Eine große Ameise braucht für die Reise weniger Schritte als eine kleine, die kleinere Ameise hat daher viel öfter die Möglichkeit, ihre Richtung zu ändern. Trotzdem ist die Verweildauer für beide Ameisen gleich, sie hängt nur von der Größe des betrachteten Areals ab.

„In der Gesamt-Verweildauer haben wir eine feste Größe identifiziert, die von der mittleren freien Weglänge gänzlich unabhängig ist. Dieses erstaunliche Resultat wird uns helfen ganz unterschiedliche Transportphänomene besser zu verstehen die etwa auch in ganz konkreten Anwendungen wie Solarzellen auftreten“, sagt Stefan Rotter. Egal ob Teilchen, Wellen oder Ameisen – vom Studium eines Transportprozesses kann man auch etwas über scheinbar völlig anders gelagerte Vorgänge lernen.

Der Fachartikel wird diese Woche im Journal "PNAS” publiziert

Rückfragehinweis:
Prof. Stefan Rotter
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13618
stefan.rotter@tuwien.ac.at


Weitere Informationen:

http://dx.doi.org/10.1073/pnas.1417725111  PNAS-Paper (Link nach Publizierung aktiv)
http://arxiv.org/abs/1409.7229  Eine frei zugängliche Vorversion
http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2014/wellenameisen/  Bilderdownload

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Harmonien in der Optoelektronik
21.07.2017 | Georg-August-Universität Göttingen

nachricht Von photonischen Nanoantennen zu besseren Spielekonsolen
20.07.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten