Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sein oder Nichtsein: Bessere Tests für die Existenz der „Schrödinger-Katze“

18.04.2016

Wissenschaftler am MPQ entwickeln neue Beweisverfahren für den makroskopischen Realismus

In der klassischen Welt besitzen Objekte vorgegebene Eigenschaften. Physikalische Einflüsse wirken streng lokal und Eigenschaften makroskopischer Systeme können im Prinzip gemessen werden ohne sie zu verändern. Diese Regeln kennzeichnen das Weltbild des „lokalen“ und des „makroskopischen Realismus“ und stehen im Widerspruch zur Quantenmechanik. Doch welche Theorie in welchem Rahmen gilt, ist noch nicht in allen Punkten ausgetestet und derzeit Gegenstand weltweiter Forschungsaktivitäten.


Links: Alle vernünftigen physikalischen Theorien, die Quantenmechanik (QM) eingeschlossen, gehorchen der „no-signalling“ (NS) Annahme. Lokaler Realismus (LR) ist durch die Bell’schen Ungleichungen (BI) eng eingegrenzt, die somit ein optimales Werkzeug für experimentelle Tests darstellen. NS, QM, und LR befinden sich in einem Wahrscheinlichkeitsraum der gleichen Dimension, hier der Einfachheit halber in zwei Dimensionen gezeichnet. Rechts: Ein ganz anderes Bild ergibt sich für den makroskopischen Realismus (MR). Hier haben die Wahrscheinlichkeitsräume von MR und QM unterschiedliche Dimensionen. Die Leggett-Garg-Ungleichungen (LGI) sind Schnitte durch den QM-Raum und grenzen MR nicht eng ein. Daher sind LGI nicht optimal für experimentelle Tests des MR. MPQ, Abteilung Theorie

Als optimales Werkzeug für die Widerlegung des lokalen Realismus in Quanten-Experimenten haben sich die sogenannten Bell’schen Ungleichungen herausgestellt. Entsprechende Ungleichungen wurden in den vergangenen Jahrzehnten auch für die Überprüfung des makroskopischen Realismus herangezogen.

Lucas Clemente und Johannes Kofler aus der Abteilung Theorie am Max-Planck-Institut in Garching haben jetzt gezeigt, dass in diesem Fall Ungleichungen aus grundsätzlichen Erwägungen nicht das optimale Werkzeug sind. Ihre Ergebnisse offenbaren, dass sich die für den lokalen Realismus charakteristischen räumlichen Korrelationen und die für den makroskopischen Realismus relevanten zeitlichen Korrelationen, angewendet auf die Quantenphysik, in ihrer mathematischen Struktur gravierend unterscheiden.

Gleichzeitig liefern sie mit der „no-signalling-in-time“-Annahme ein neues und besseres Werkzeug für die Suche nach Zuständen von der Art der „Schrödinger-Katze“ (PhysRevLett 116.150401, 15. April 2016).

Zwei fundamentale Annahmen kennzeichnen das Weltbild des lokalen Realismus: Zum einen liegen die Eigenschaften von Objekten nicht im Auge des Betrachters, sondern sind fest vorgegeben. Zum andern können sich physikalische Einflüsse niemals schneller als mit Lichtgeschwindigkeit ausbreiten. 1964 entdeckte John Bell, dass sich aus diesen Annahmen Einschränkungen für die möglichen Korrelationen zwischen Messungen an räumlich getrennten Objekten ergeben. Diese werden heute auch als die „Bell’schen Ungleichungen“ bezeichnet.

1984 bewies Arthur Fine, dass alle lokal-realistischen Theorien den Bell’schen Ungleichungen genügen müssen. Darüber hinaus lässt sich aus der Gültigkeit der Bell’schen Ungleichungen folgern, dass es für die beobachteten Daten eine lokal-realistische Erklärung gibt. In den vergangenen Jahrzehnten haben quantenphysikalische Experimente wiederholt mit immer höherer Genauigkeit belegt, dass die Bell’schen Ungleichungen verletzt werden können, z.B. wenn man es mit verschränkten Quanten-Zuständen von zwei oder mehr Systemen zu tun hat.

Damit wurde das Weltbild des lokalen Realismus in Bezug auf die räumlichen Korrelationen von Objekten schlüssig widerlegt. Auch in der Quantenmechanik gilt jedoch die „no-signalling“-Annahme, dass Signalübertragung mit Überlichtgeschwindigkeit nicht möglich ist. Sie gehört zu den festen Säulen der Speziellen Relativitätstheorie, und ihre Verletzung stände im Widerspruch zur Kausalität: sie würde implizieren, dass man mit der Vergangenheit kommunizieren kann. Quantenexperimente können daher nur die Bell’schen Ungleichungen verletzen, nicht jedoch die „no-signalling“ Annahme.

Das Gegenstück zur Verschränkung von Quantensystemen, aus der sich die Verletzung der Bell‘schen Ungleichungen beim lokalen Realismus ergibt, ist das berühmte Paradoxon der „Schrödinger Katze“ als Test für die Gültigkeit des makroskopischen Realismus. Gemäß diesem „Gedankenexperiment“ kann die Katze in einen Überlagerungszustand gebracht werden, in dem sie gleichzeitig tot und lebendig ist.

Solche Überlagerungszustände existieren erwiesenermaßen für mikroskopische Objekte. Die meisten Physiker hadern jedoch mit dem Umstand, dass die Quantenmechanik im Prinzip ein solches seltsames Verhalten auch auf makroskopischer Skala erlauben würde. Im Weltbild des makroskopischen Realismus ist eine Superposition makroskopischer Zustände dagegen strikt verboten, und makroskopische Objekte können gemessen werden, ohne sie gleichzeitig zu verändern.

1985 zeigten Anthony Leggett und Anupam Garg, dass sich aus den Annahmen des makroskopischen Realismus Einschränkungen ergeben in Bezug auf die zeitlichen Korrelationen, die zwischen aufeinander folgenden Messungen an einem einzelnen Quantensystem auftreten können. Analog zu den Bell’schen Ungleichungen für den lokalen Realismus lassen sich somit auch für den makroskopischen Realismus Ungleichungen definieren, denen diese zeitlichen Korrelationen genügen müssen.

In den vergangenen Jahren wurden diese „Leggett-Garg-Ungleichungen“ in vielen Experimenten verletzt, allerdings nur mit mikroskopischen Quantensystemen, die den makroskopischen Realismus nicht widerlegen können. Ob es tatsächlich möglich ist, makroskopische Objekte wie eine ausgewachsene Katze in einen Superpositionszustand zu bringen, ist experimentell noch nicht entschieden. Es ist eine der spannendsten noch offenen Fragen, die die Grundlagen der Physik betreffen.

Auch wenn es im lokalen Realismus um räumliche Korrelationen zwischen wenigstens zwei Systemen geht und beim makroskopischen Realismus um zeitliche Korrelationen von Messungen an einem einzelnen Objekt, so bestehen doch viele Analogien zwischen den Konzepten, und die entsprechenden Bell’schen und Leggett-Garg‘schen Ungleichungen sind in ihrer mathematischen Struktur fast identisch. Die Arbeit von Clemente und Kofler hat nun einen bemerkenswerten und bislang unbekannten fundamentalen Unterschied aufgedeckt: mit einer ausgeklügelten Analyse der Dimensionen von Wahrscheinlichkeitsräumen gelang es ihnen zu beweisen, dass das von Arthur Fine für den lokalen Realismus postulierte Theorem nicht auf das Weltbild des makroskopischen Realismus übertragen werden darf. Mit anderen Worten, die Leggett-Garg-Ungleichungen bilden – im Gegensatz zu den Bell’schen Ungleichungen für den lokalen Realismus – keine optimale Grenze für die makro-realistischen Theorien (siehe Abbildung).

Der Grund dafür ist interessanterweise die zeitliche Analogie zu der „no-signalling“-Annahme. Die „no-signalling-in-time“ Annahme fordert, dass die Ergebnisse späterer Messungen an makroskopischen Objekten nicht von früheren Messungen abhängen dürfen. Diese Regel gilt im makroskopischen Realismus, wird aber in der Quantenmechanik verletzt. „Im Gegensatz zu den Leggett-Garg-Ungleichungen ist die Kombination aller „no-signalling-in-time“-Bedingungen sowohl notwendig als auch hinreichend für den makroskopischen Realismus“, erklärt Clemente. „Das offenbart einen entscheidenden Unterschied zwischen den räumlichen Korrelationen bei Tests des lokalen Realismus und den zeitlichen Korrelationen bei Tests des makroskopischen Realismus.“

Physiker, die mit ihren Experimenten den makroskopischen Realismus widerlegen wollen, sollten sich demzufolge nicht mehr auf die Legget-Garg-Ungleichungen fokussieren, wie sie es viele Jahre lang gemacht haben. „Die Leggett-Garg Ungleichungen schränken den Parameterraum, in dem mögliche Verletzungen des makroskopischen Realismus gefunden werden können, unnötig stark ein“, ergänzt Kofler. „Die ‚no-signalling-in-time’-Bedingung ist nicht nur besser, sondern sogar optimal für experimentelle Tests, ob die Schrödinger-Katze in der Natur existieren kann.“ Olivia Meyer-Streng

Originalveröffentlichung:

Lucas Clemente and Johannes Kofler
No Fine theorem for macrorealism: Limitations of the Leggett-Garg inequality
Phys.Rev.Lett.116.150401, DOI:10.1103, 15. April 2016

Kontakt:

Dr. Johannes Kofler
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 - 242
E-Mail: johannes.kofler@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Telefon: +49 (0)89 / 32 905 - 213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

nachricht Sternenstaub reist häufiger in Meteoriten mit als gedacht
15.08.2017 | Max-Planck-Institut für Chemie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Graduiertenschule HyPerCells entwickelt hocheffiziente Perowskit- Dünnschichtsolarzelle

17.08.2017 | Energie und Elektrotechnik

Forschungsprojekt zu optimierten Oberflächen von Metallpulver-Spritzguss-Werkzeugen

17.08.2017 | Verfahrenstechnologie

Fernerkundung für den Naturschutz

17.08.2017 | Ökologie Umwelt- Naturschutz