Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sein oder Nichtsein: Bessere Tests für die Existenz der „Schrödinger-Katze“

18.04.2016

Wissenschaftler am MPQ entwickeln neue Beweisverfahren für den makroskopischen Realismus

In der klassischen Welt besitzen Objekte vorgegebene Eigenschaften. Physikalische Einflüsse wirken streng lokal und Eigenschaften makroskopischer Systeme können im Prinzip gemessen werden ohne sie zu verändern. Diese Regeln kennzeichnen das Weltbild des „lokalen“ und des „makroskopischen Realismus“ und stehen im Widerspruch zur Quantenmechanik. Doch welche Theorie in welchem Rahmen gilt, ist noch nicht in allen Punkten ausgetestet und derzeit Gegenstand weltweiter Forschungsaktivitäten.


Links: Alle vernünftigen physikalischen Theorien, die Quantenmechanik (QM) eingeschlossen, gehorchen der „no-signalling“ (NS) Annahme. Lokaler Realismus (LR) ist durch die Bell’schen Ungleichungen (BI) eng eingegrenzt, die somit ein optimales Werkzeug für experimentelle Tests darstellen. NS, QM, und LR befinden sich in einem Wahrscheinlichkeitsraum der gleichen Dimension, hier der Einfachheit halber in zwei Dimensionen gezeichnet. Rechts: Ein ganz anderes Bild ergibt sich für den makroskopischen Realismus (MR). Hier haben die Wahrscheinlichkeitsräume von MR und QM unterschiedliche Dimensionen. Die Leggett-Garg-Ungleichungen (LGI) sind Schnitte durch den QM-Raum und grenzen MR nicht eng ein. Daher sind LGI nicht optimal für experimentelle Tests des MR. MPQ, Abteilung Theorie

Als optimales Werkzeug für die Widerlegung des lokalen Realismus in Quanten-Experimenten haben sich die sogenannten Bell’schen Ungleichungen herausgestellt. Entsprechende Ungleichungen wurden in den vergangenen Jahrzehnten auch für die Überprüfung des makroskopischen Realismus herangezogen.

Lucas Clemente und Johannes Kofler aus der Abteilung Theorie am Max-Planck-Institut in Garching haben jetzt gezeigt, dass in diesem Fall Ungleichungen aus grundsätzlichen Erwägungen nicht das optimale Werkzeug sind. Ihre Ergebnisse offenbaren, dass sich die für den lokalen Realismus charakteristischen räumlichen Korrelationen und die für den makroskopischen Realismus relevanten zeitlichen Korrelationen, angewendet auf die Quantenphysik, in ihrer mathematischen Struktur gravierend unterscheiden.

Gleichzeitig liefern sie mit der „no-signalling-in-time“-Annahme ein neues und besseres Werkzeug für die Suche nach Zuständen von der Art der „Schrödinger-Katze“ (PhysRevLett 116.150401, 15. April 2016).

Zwei fundamentale Annahmen kennzeichnen das Weltbild des lokalen Realismus: Zum einen liegen die Eigenschaften von Objekten nicht im Auge des Betrachters, sondern sind fest vorgegeben. Zum andern können sich physikalische Einflüsse niemals schneller als mit Lichtgeschwindigkeit ausbreiten. 1964 entdeckte John Bell, dass sich aus diesen Annahmen Einschränkungen für die möglichen Korrelationen zwischen Messungen an räumlich getrennten Objekten ergeben. Diese werden heute auch als die „Bell’schen Ungleichungen“ bezeichnet.

1984 bewies Arthur Fine, dass alle lokal-realistischen Theorien den Bell’schen Ungleichungen genügen müssen. Darüber hinaus lässt sich aus der Gültigkeit der Bell’schen Ungleichungen folgern, dass es für die beobachteten Daten eine lokal-realistische Erklärung gibt. In den vergangenen Jahrzehnten haben quantenphysikalische Experimente wiederholt mit immer höherer Genauigkeit belegt, dass die Bell’schen Ungleichungen verletzt werden können, z.B. wenn man es mit verschränkten Quanten-Zuständen von zwei oder mehr Systemen zu tun hat.

Damit wurde das Weltbild des lokalen Realismus in Bezug auf die räumlichen Korrelationen von Objekten schlüssig widerlegt. Auch in der Quantenmechanik gilt jedoch die „no-signalling“-Annahme, dass Signalübertragung mit Überlichtgeschwindigkeit nicht möglich ist. Sie gehört zu den festen Säulen der Speziellen Relativitätstheorie, und ihre Verletzung stände im Widerspruch zur Kausalität: sie würde implizieren, dass man mit der Vergangenheit kommunizieren kann. Quantenexperimente können daher nur die Bell’schen Ungleichungen verletzen, nicht jedoch die „no-signalling“ Annahme.

Das Gegenstück zur Verschränkung von Quantensystemen, aus der sich die Verletzung der Bell‘schen Ungleichungen beim lokalen Realismus ergibt, ist das berühmte Paradoxon der „Schrödinger Katze“ als Test für die Gültigkeit des makroskopischen Realismus. Gemäß diesem „Gedankenexperiment“ kann die Katze in einen Überlagerungszustand gebracht werden, in dem sie gleichzeitig tot und lebendig ist.

Solche Überlagerungszustände existieren erwiesenermaßen für mikroskopische Objekte. Die meisten Physiker hadern jedoch mit dem Umstand, dass die Quantenmechanik im Prinzip ein solches seltsames Verhalten auch auf makroskopischer Skala erlauben würde. Im Weltbild des makroskopischen Realismus ist eine Superposition makroskopischer Zustände dagegen strikt verboten, und makroskopische Objekte können gemessen werden, ohne sie gleichzeitig zu verändern.

1985 zeigten Anthony Leggett und Anupam Garg, dass sich aus den Annahmen des makroskopischen Realismus Einschränkungen ergeben in Bezug auf die zeitlichen Korrelationen, die zwischen aufeinander folgenden Messungen an einem einzelnen Quantensystem auftreten können. Analog zu den Bell’schen Ungleichungen für den lokalen Realismus lassen sich somit auch für den makroskopischen Realismus Ungleichungen definieren, denen diese zeitlichen Korrelationen genügen müssen.

In den vergangenen Jahren wurden diese „Leggett-Garg-Ungleichungen“ in vielen Experimenten verletzt, allerdings nur mit mikroskopischen Quantensystemen, die den makroskopischen Realismus nicht widerlegen können. Ob es tatsächlich möglich ist, makroskopische Objekte wie eine ausgewachsene Katze in einen Superpositionszustand zu bringen, ist experimentell noch nicht entschieden. Es ist eine der spannendsten noch offenen Fragen, die die Grundlagen der Physik betreffen.

Auch wenn es im lokalen Realismus um räumliche Korrelationen zwischen wenigstens zwei Systemen geht und beim makroskopischen Realismus um zeitliche Korrelationen von Messungen an einem einzelnen Objekt, so bestehen doch viele Analogien zwischen den Konzepten, und die entsprechenden Bell’schen und Leggett-Garg‘schen Ungleichungen sind in ihrer mathematischen Struktur fast identisch. Die Arbeit von Clemente und Kofler hat nun einen bemerkenswerten und bislang unbekannten fundamentalen Unterschied aufgedeckt: mit einer ausgeklügelten Analyse der Dimensionen von Wahrscheinlichkeitsräumen gelang es ihnen zu beweisen, dass das von Arthur Fine für den lokalen Realismus postulierte Theorem nicht auf das Weltbild des makroskopischen Realismus übertragen werden darf. Mit anderen Worten, die Leggett-Garg-Ungleichungen bilden – im Gegensatz zu den Bell’schen Ungleichungen für den lokalen Realismus – keine optimale Grenze für die makro-realistischen Theorien (siehe Abbildung).

Der Grund dafür ist interessanterweise die zeitliche Analogie zu der „no-signalling“-Annahme. Die „no-signalling-in-time“ Annahme fordert, dass die Ergebnisse späterer Messungen an makroskopischen Objekten nicht von früheren Messungen abhängen dürfen. Diese Regel gilt im makroskopischen Realismus, wird aber in der Quantenmechanik verletzt. „Im Gegensatz zu den Leggett-Garg-Ungleichungen ist die Kombination aller „no-signalling-in-time“-Bedingungen sowohl notwendig als auch hinreichend für den makroskopischen Realismus“, erklärt Clemente. „Das offenbart einen entscheidenden Unterschied zwischen den räumlichen Korrelationen bei Tests des lokalen Realismus und den zeitlichen Korrelationen bei Tests des makroskopischen Realismus.“

Physiker, die mit ihren Experimenten den makroskopischen Realismus widerlegen wollen, sollten sich demzufolge nicht mehr auf die Legget-Garg-Ungleichungen fokussieren, wie sie es viele Jahre lang gemacht haben. „Die Leggett-Garg Ungleichungen schränken den Parameterraum, in dem mögliche Verletzungen des makroskopischen Realismus gefunden werden können, unnötig stark ein“, ergänzt Kofler. „Die ‚no-signalling-in-time’-Bedingung ist nicht nur besser, sondern sogar optimal für experimentelle Tests, ob die Schrödinger-Katze in der Natur existieren kann.“ Olivia Meyer-Streng

Originalveröffentlichung:

Lucas Clemente and Johannes Kofler
No Fine theorem for macrorealism: Limitations of the Leggett-Garg inequality
Phys.Rev.Lett.116.150401, DOI:10.1103, 15. April 2016

Kontakt:

Dr. Johannes Kofler
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 - 242
E-Mail: johannes.kofler@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Telefon: +49 (0)89 / 32 905 - 213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

200 Weltneuheiten beim Innovationstag Mittelstand in Berlin

26.04.2017 | Veranstaltungen

123. Internistenkongress: Wie digitale Technik die Patientenversorgung verändert

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Akute Myeloische Leukämie: Ulmer erforschen bisher unbekannten Mechanismus der Blutkrebsentstehung

26.04.2017 | Biowissenschaften Chemie

Naturkatastrophen kosten Winzer jährlich Milliarden

26.04.2017 | Interdisziplinäre Forschung

Zusammenhang zwischen Immunsystem, Hirnstruktur und Gedächtnis entdeckt

26.04.2017 | Biowissenschaften Chemie