Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rekordmessungen an Materie und Antimaterie

13.08.2015

Dass es unsere Welt gibt, ist alles andere als selbstverständlich. Denn im Urknall ist genauso viel Materie wie Antimaterie entstanden. Warum nur die Materie übrig geblieben ist, die sich heute etwa in den Himmelskörpern des Universums findet, möchten Forscher unter anderem des Heidelberger Max-Planck-Instituts für Kernphysik in einem japanisch-deutschen Kooperationsprojekt namens BASE klären. In ihren Experimenten am Cern in der Schweiz haben die Wissenschaftler nun festgestellt, dass die Massen von Proton und Antiproton bis auf elf Nachkommastellen identisch sind. Sie setzen damit ein neues Limit für die Symmetrie zwischen Materie und Antimaterie.

Das Weltbild der Teilchenphysiker ist noch nicht perfekt, und das wissen diese ganz genau. Doch sie sehen derzeit noch nicht, wie sie die Unzulänglichkeiten beheben könnten. Zwar kann das Standardmodell der Teilchenphysik die Existenz aller bekannten Elementarteilchen und viele ihrer Beziehungen untereinander erklären, manche Beobachtungen aber passen dazu einfach nicht.


Das Schema der Penningfalle, die das BASE-Projektentwickelt hat. Ein Antiproton (rot) zirkuliert in der Messfalle, unterdessen wird ein Hydrid-Ion (grün) an einer Elektrode geparkt.

Fabienne Marcastel, Georg Schneider/BASE-Kollaboration


In einer Penningfalle fangen Forscher des Base-Projektes Antiprotonen und negativ gelade Wasserstoff-Ionen, um aus deren Umlauffrequenz die Masse von Proton und Antiproton zu ermitteln.AntProton u

Georg Schneider/BASE-Kollaboration

So begründet das Standardmodell nicht die Asymmetrie zwischen Materie und Antimaterie: Obwohl sie zu Beginn des Universums in gleichen Mengen entstanden sind und sich größtenteils gegenseitig wieder ausgelöscht haben – denn das geschieht, wenn Materie auf Antimaterie trifft –, ist heute noch reichlich Materie im Universum vorhanden.

Also wollen Physiker das theoretische Gebäude des Standardmodells so ausbauen oder gar neu errichten, dass es nicht länger an verschiedenen Stellen wackelt. Daher suchen sie zunächst nach detaillierten experimentellen Hinweisen auf die konkreten Schwachstellen, zum Beispiel nach Unterschieden zwischen Materie und Antimaterie.

Genau diese zu finden, ist das Ziel des Projektes namens BASE, kurz für Baryon Antibaryon Symmetry Experiment. Baryon und Antibaryon nennen Physiker Teilchen, die sich wie das Proton und Antiproton aus drei Elementarteilchen, nämlich Quarks beziehungsweise Antiquarks zusammensetzen.

Eine vier Mal genauere Messung, als es zuvor möglich war

Auf ihrer Suche nach noch so kleinen Differenzen zwischen Materie und Antimaterie haben die Base-Forscher nun das Verhältnis von Ladung zu Masse im Proton und Antiproton gemessen und haben die beiden Teilchen somit gewissermaßen gewogen. Damit haben sie den Vergleich zwischen Materie und Antimaterie in diesem System um einen Faktor vier genauer gemacht. „Wir haben festgestellt, dass das Verhältnis von Ladung zu Masse bis auf 69 Billionstel Bruchteile identisch ist“, sagt Stefan Ulmer, Wissenschaftler am Cern und Sprecher des Base-Projektes.

Mit dem Ergebnis bestätigen die Physiker Theorien, denen zufolge es zwischen Materie und Antimaterie keine Masseunterschiede geben dürfte. Fänden die Forscher eine Massedifferenz, stellte das nicht nur das Standardmodell in Frage, sondern auch noch grundlegendere Theorien der Teilchenphysik. „Aber die Natur ist immer für Überraschungen gut“, sagt Klaus Blaum, Direktor am Max-Planck-Institut für Kernphysik in Heidelberg und einer der Partner von Base. „Daher müssen wir alle Möglichkeiten nutzen, die Modelle so präzise wie möglich zu überprüfen.“

Um das Proton und das Antiproton so extrem genau zu wiegen, haben sich die Forscher eine ausgeklügelte Methode einfallen lassen: Sie fangen die geladenen Teilchen in einer Penningfalle, in der die Partikel durch elektrische und magnetische Felder festgehalten werden. Das Magnetfeld zwingt die Teilchen dabei auf eine Kreisbahn, die ein Partikel etwa 30 Millionen Mal pro Sekunde durchläuft. Zum Vergleich: Auf einem Kettenkarussell brauchen wir fünf bis zehn Sekunden für einen einzigen Umlauf, und bei schnelleren Umdrehungen würde uns auch schnell schlecht.

Aus der Umlauf-Frequenz ergibt sich das Verhältnis von Ladung zu Masse

So schnell die geladenen Teilchen auch in der Penningfalle sind, die Zahl ihrer Umläufe können die Forscher sehr präzise messen. Da die Frequenz ihrer Rotation vom Verhältnis ihrer Ladung zu ihrer Masse abhängt, lässt sich dieser Wert auf diese Weise sehr gut bestimmen.

Allerdings gibt es bei den Experimenten des Base-Projektes eine Komplikation, die vielleicht nicht jeder erwartet: „Es ist heute noch sehr schwierig, eine Spannung auf die elfte Stelle nach dem Komma genau einzustellen“, erklärt Klaus Blaum. Genau das müsste den Forschern aber gelingen, wenn sie das Proton und das Antiproton in der Penningfalle einzeln schleudern wollten. Dann müssten sie das elektrische Feld in der Falle mit einer negativen Spannung erzeugen, um das positiv geladene Proton einzufangen. Das negativ geladene Antiproton müssten sie entsprechend mit einer positiven Spannung einpferchen, deren Betrag sehr genau mit dem der zuvor verwendeten negativen Spannung übereinstimmt.

Da es derzeit kaum möglich ist, für beide Teilchen elektrische Felder gleicher oder zumindest sehr genau bekannter Stärke zu erzeugen, haben sich die Physiker auch hier einen Kniff einfallen lassen. Sie messen Proton und Antiproton in einem Experiment mit einem einzigen elektrischen Feld. Dafür müssen sie das Proton jedoch mit zwei Elektronen versehen und so in ein negativ geladenes Wasserstoff-Ion verwandeln. Denn nur so lässt es sich wie das ebenfalls negativ geladene Antiproton mit einer positiven Spannung bändigen.

Im magnetischen Moment könnten sich Proton und Antiproton unterscheiden

„Es wäre zwar noch besser, wenn wir am Proton selbst messen könnten“, sagt Klaus Blaum. Die Masse des Elektrons und seine Bindungsenergie seien aber sehr genau bekannt, sodass sich aus dem Ladungs-Masse-Verhältnis des Wasserstoff-Ions sehr gut der entsprechende Wert des Protons und dessen Masse ermitteln ließen. „Uns ist auf diese Weise die weltbeste Messung des Massevergleichs von Proton und Antiproton gelungen.“

Mit ihren Experimenten haben die Forscher im Vergleich zwischen Materie und Antimaterie also eine neue Stufe erreicht. „Die Forschung mit Antimaterie-Teilchen hat in den letzten Jahren enorme Fortschritte gemacht“, sagt Rolf Heuer, Generaldirektor des CERN. „Der Grad an Präzision, den Base erreicht hat, beeindruckt mich.“

Die Fertigkeiten, die sich die Base-Forscher in ihren bisherigen Messungen angeeignet haben, wollen sie nun nutzen, um weiter nach Unterschieden zwischen Materie und Antimaterie zu fahnden. „Sehr vielversprechend, um Differenzen zwischen Materie und Antimaterie aufzuspüren, sind die magnetischen Momente des Protons und Antiprotons“, sagt Stefan Ulmer. Das magnetische Moment des Protons haben die Forscher bereits vermessen. Jetzt wollen sie den entsprechenden Wert des Antiprotons ermitteln. „Wir haben gerade wieder angefangen zu messen“, sagt Stefan Ulmer. So könnten die Forscher möglicherweise brauchbare Hinweise finden, warum unsere Welt existiert.

PH

Kontakt:
Prof. Dr. Klaus Blaum
Max-Planck-Institut für Kernphysik
Telefon:+49 6221 516-850
E-Mail: klaus.blaum@mpi-hd.mpg.de

Originalveröffentlichung:
High-precision comparison of the antiproton-to-proton charge-to-mass ratio
Stefan Ulmer, Christian Smorra, Andreas Mooser, Kurt Franke, Hiroki Nagahama, Georg Schneider, Takashi Higuchi, Simon Van Gorp, Klaus Blaum, Yasuyuki Matsuda, Wolfgang Quint, Jochen Walz und Yasunori Yamazaki
Nature, 12. August 2015; doi:10.1038/nature14861

Peter Hergersberg | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
Weitere Informationen:
http://www.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Berner Mars-Kamera liefert erste farbige Bilder vom Mars
26.04.2018 | Universität Bern

nachricht Belle II misst die ersten Teilchenkollisionen
26.04.2018 | Max-Planck-Institut für Physik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.

Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Konferenz »Encoding Cultures. Leben mit intelligenten Maschinen« | 27. & 28.04.2018 ZKM | Karlsruhe

26.04.2018 | Veranstaltungen

Konferenz zur Marktentwicklung von Gigabitnetzen in Deutschland

26.04.2018 | Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Weltrekord an der Uni Paderborn: Optische Datenübertragung mit 128 Gigabits pro Sekunde

26.04.2018 | Informationstechnologie

Multifunktionaler Mikroschwimmer transportiert Fracht und zerstört sich selbst

26.04.2018 | Biowissenschaften Chemie

Berner Mars-Kamera liefert erste farbige Bilder vom Mars

26.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics