Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

14.09.2017

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich nicht zusammen vor. Ihre Verbindung ermöglicht es, die magnetische Ordnung der Materialien mit elektrischen Feldern zu verändern.


Ein einzelner Elektronenspin in einem Quantensensor reagiert auf das magnetische Feld eines dünnen Bismutferritfilms.

Bild: Universität Basel, Departement Physik

Besonders vielversprechend ist das für neuartige Datenspeicher: Mit multiferroischen Materialien könnten sich nanometerkleine magnetische Speicher realisieren lassen, die man durch elektrische Felder entschlüsseln und verändern kann.

Solche Magnetspeicher würden nur wenig Strom verbrauchen und sehr schnell arbeiten. Zudem wären sie auch in der Spintronik einsetzbar – einer neuen Form der Elektronik, die neben der elektrischen Ladung auch den Spin von Elektronen nutzt.

Spiralförmige magnetische Ordnung

Bismutferrit ist ein multiferroisches Material, das auch bei Raumtemperatur elektrische und magnetische Eigenschaften besitzt. Während seine elektrischen Eigenschaften gut untersucht sind, gab es bisher keine geeignete Methode für die Darstellung der magnetischen Ordnung auf Nanometerebene.

Die Gruppe von Georg-H. Endress-Professor Patrick Maletinsky vom Swiss Nanoscience Institute und Departement Physik der Universität Basel hat Quantensensoren entwickelt, die auf Diamanten mit Stickstoff-Vakanzzentren basieren. Damit konnten sie zusammen mit Kollegen von der Universität Montpellier und der Universität Paris-Saclay in Frankreich erstmals die magnetische Ordnung eines dünnen Bismutferrit-Films abbilden und untersuchen, wie sie in «Nature» berichten.

Zu wissen, wie sich die Elektronenspins verhalten und wie das Magnetfeld geordnet ist, ist für die zukünftige Nutzung von multiferroischen Materialien als Speicher von entscheidender Bedeutung.

Die Wissenschaftler konnten zeigen, dass Bismutferrit eine spiralförmige magnetische Ordnung aufweist. Zwei übereinanderliegende Elektronenspins (in der Abbildung rot und blau) sind dabei gegenläufig orientiert und rotieren im Raum. Bisher war man davon ausgegangen, dass diese Rotation in einer Ebene verläuft. Die Quantensensoren wiesen nun nach, dass es durch eine leichte Verkantung der gegenüberliegenden Spins zu einer räumlichen, leicht verdrehten Rotation kommt.

«Unsere Diamant-Quantensensoren erlauben nicht nur eine qualitative, sondern auch eine quantitative Analyse. Deshalb konnten wir die Spin-Anordnung in Multiferroika zum ersten Mal detailgenau darstellen», erklärt Patrick Maletinsky die Ergebnisse. «Wir sind zuversichtlich, dass sich dadurch die Erforschung dieser vielversprechenden Materialien weiter vorantreiben lässt.»

Leerstellen mit besonderen Eigenschaften

Die verwendeten Quantensensoren bestehen aus winzigen einkristallinen Diamanten, die an zwei benachbarten Stellen im Kristallgitter eine Leerstelle und ein Stickstoffatom aufweisen. In diesen Stickstoff-Vakanzzentren kreisen einzelne Elektronen, deren Spin sehr empfindlich auf äussere elektrische und magnetische Felder reagiert. So lassen sich die Felder mit einer Auflösung von nur wenigen Nanometern abbilden.

Wissenschaftler der Université de Montpellier führten die magnetischen Messungen mit den aus Basel stammenden Quantensensoren durch. Die Proben stammen von Experten des CNRS/Thales Labors an der Universität Paris-Saclay, die in der Bismutferrit-Forschung führend sind.

Quantensensoren für den Markt

Die eingesetzten Quantensensoren sind für die Untersuchung von verschiedensten Materialien geeignet, da sie sowohl bei Raumtemperatur wie auch bei Temperaturen nahe des absoluten Nullpunktes detailgenaue qualitative wie quantitative Daten liefern.

Um sie auch anderen Forschungsgruppen verfügbar zu machen, hat Patrick Maletinsky 2016 zusammen mit Dr. Mathieu Munsch das Start-up Qnami gegründet. Qnami produziert die Diamantsensoren und berät seine Kunden aus Forschung und Industrie in der Anwendung.

Originalbeitrag

I. Gross, W. Akhtar, V. Garcia, L. J. Martínez, S. Chouaieb, K. Garcia, C. Carrétéro, A. Barthélémy, P. Appel, P. Maletinsky, J.-V. Kim, J. Y. Chauleau, N. Jaouen, M. Viret, M. Bibes, S. Fusil and V. Jacques
Real-space imaging of non-collinear antiferromagnetic order with a single spin magnetometer
Nature (2017), doi: 10.1038/nature23656

Weitere Informationen

Prof. Dr. Patrick Maletinsky, Universität Basel, Departement Physik, Tel. +41 61 207 37 63, E-Mail: patrick.maletinsky@unibas.ch

Cornelia Niggli | Universität Basel
Weitere Informationen:
http://www.unibas.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Biophysik - Blitzlicht aus der Nanowelt
24.04.2018 | Ludwig-Maximilians-Universität München

nachricht Moleküle brillant beleuchtet
23.04.2018 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.

Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Impfstoff-Kandidat gegen Malaria erfolgreich in erster klinischer Studie untersucht

25.04.2018 | Biowissenschaften Chemie

Erkheimer Ökohaus-Pionier eröffnet neues Musterhaus „Heimat 4.0“

25.04.2018 | Architektur Bauwesen

Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

25.04.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics