Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

14.09.2017

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich nicht zusammen vor. Ihre Verbindung ermöglicht es, die magnetische Ordnung der Materialien mit elektrischen Feldern zu verändern.


Ein einzelner Elektronenspin in einem Quantensensor reagiert auf das magnetische Feld eines dünnen Bismutferritfilms.

Bild: Universität Basel, Departement Physik

Besonders vielversprechend ist das für neuartige Datenspeicher: Mit multiferroischen Materialien könnten sich nanometerkleine magnetische Speicher realisieren lassen, die man durch elektrische Felder entschlüsseln und verändern kann.

Solche Magnetspeicher würden nur wenig Strom verbrauchen und sehr schnell arbeiten. Zudem wären sie auch in der Spintronik einsetzbar – einer neuen Form der Elektronik, die neben der elektrischen Ladung auch den Spin von Elektronen nutzt.

Spiralförmige magnetische Ordnung

Bismutferrit ist ein multiferroisches Material, das auch bei Raumtemperatur elektrische und magnetische Eigenschaften besitzt. Während seine elektrischen Eigenschaften gut untersucht sind, gab es bisher keine geeignete Methode für die Darstellung der magnetischen Ordnung auf Nanometerebene.

Die Gruppe von Georg-H. Endress-Professor Patrick Maletinsky vom Swiss Nanoscience Institute und Departement Physik der Universität Basel hat Quantensensoren entwickelt, die auf Diamanten mit Stickstoff-Vakanzzentren basieren. Damit konnten sie zusammen mit Kollegen von der Universität Montpellier und der Universität Paris-Saclay in Frankreich erstmals die magnetische Ordnung eines dünnen Bismutferrit-Films abbilden und untersuchen, wie sie in «Nature» berichten.

Zu wissen, wie sich die Elektronenspins verhalten und wie das Magnetfeld geordnet ist, ist für die zukünftige Nutzung von multiferroischen Materialien als Speicher von entscheidender Bedeutung.

Die Wissenschaftler konnten zeigen, dass Bismutferrit eine spiralförmige magnetische Ordnung aufweist. Zwei übereinanderliegende Elektronenspins (in der Abbildung rot und blau) sind dabei gegenläufig orientiert und rotieren im Raum. Bisher war man davon ausgegangen, dass diese Rotation in einer Ebene verläuft. Die Quantensensoren wiesen nun nach, dass es durch eine leichte Verkantung der gegenüberliegenden Spins zu einer räumlichen, leicht verdrehten Rotation kommt.

«Unsere Diamant-Quantensensoren erlauben nicht nur eine qualitative, sondern auch eine quantitative Analyse. Deshalb konnten wir die Spin-Anordnung in Multiferroika zum ersten Mal detailgenau darstellen», erklärt Patrick Maletinsky die Ergebnisse. «Wir sind zuversichtlich, dass sich dadurch die Erforschung dieser vielversprechenden Materialien weiter vorantreiben lässt.»

Leerstellen mit besonderen Eigenschaften

Die verwendeten Quantensensoren bestehen aus winzigen einkristallinen Diamanten, die an zwei benachbarten Stellen im Kristallgitter eine Leerstelle und ein Stickstoffatom aufweisen. In diesen Stickstoff-Vakanzzentren kreisen einzelne Elektronen, deren Spin sehr empfindlich auf äussere elektrische und magnetische Felder reagiert. So lassen sich die Felder mit einer Auflösung von nur wenigen Nanometern abbilden.

Wissenschaftler der Université de Montpellier führten die magnetischen Messungen mit den aus Basel stammenden Quantensensoren durch. Die Proben stammen von Experten des CNRS/Thales Labors an der Universität Paris-Saclay, die in der Bismutferrit-Forschung führend sind.

Quantensensoren für den Markt

Die eingesetzten Quantensensoren sind für die Untersuchung von verschiedensten Materialien geeignet, da sie sowohl bei Raumtemperatur wie auch bei Temperaturen nahe des absoluten Nullpunktes detailgenaue qualitative wie quantitative Daten liefern.

Um sie auch anderen Forschungsgruppen verfügbar zu machen, hat Patrick Maletinsky 2016 zusammen mit Dr. Mathieu Munsch das Start-up Qnami gegründet. Qnami produziert die Diamantsensoren und berät seine Kunden aus Forschung und Industrie in der Anwendung.

Originalbeitrag

I. Gross, W. Akhtar, V. Garcia, L. J. Martínez, S. Chouaieb, K. Garcia, C. Carrétéro, A. Barthélémy, P. Appel, P. Maletinsky, J.-V. Kim, J. Y. Chauleau, N. Jaouen, M. Viret, M. Bibes, S. Fusil and V. Jacques
Real-space imaging of non-collinear antiferromagnetic order with a single spin magnetometer
Nature (2017), doi: 10.1038/nature23656

Weitere Informationen

Prof. Dr. Patrick Maletinsky, Universität Basel, Departement Physik, Tel. +41 61 207 37 63, E-Mail: patrick.maletinsky@unibas.ch

Cornelia Niggli | Universität Basel
Weitere Informationen:
http://www.unibas.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Flammenhölle mit Titan-Himmel
14.09.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Der Strahl, der unsichtbar macht
13.09.2017 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Einfach, schnell und standardisiert: Automatisiertes Wirkstoffscreening

MBM ScienceBridge GmbH vermittelt Lizenzvertrag zwischen der Universitätsmedizin Göttingen (UMG) und dem Hamburger Biotech-Unternehmen Tissue Systems Holding GmbH über die kommerzielle Nutzung einer neuen Züchtungsvorrichtung zur standardisierten Herstellung von Herzmuskelgeweben für die Verwendung beim automatisierten Wirkstoffscreening.

MBM ScienceBridge GmbH vermittelt Lizenzvertrag zwischen der Universitätsmedizin Göttingen (UMG) und dem Hamburger Biotech-Unternehmen Tissue Systems Holding...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Der Strahl, der unsichtbar macht

Eine neue Tarnkappen-Technologie wurde an der TU Wien entwickelt: Ein spezielles Material wird von oben so bestrahlt, dass es einen seitlich ankommenden Lichtstrahl ungestört passieren lässt.

Wie macht man Materialien unsichtbar? Ein Forschungsteam der TU Wien hat mit Unterstützung aus Griechenland und den USA einen neuen Ansatz für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

3. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

13.09.2017 | Veranstaltungen

Der Kosmos auf allen Skalen

13.09.2017 | Veranstaltungen

Innovative Forschungstrends in der computer- und roboterassistierten Chirurgie

12.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Polymerbasierter Leichtbau – energieeffizient gehärtet und funktional bedruckt

14.09.2017 | Messenachrichten

Arktisches Meereis erneut stark abgeschmolzen

14.09.2017 | Geowissenschaften

KATWARN warnt auch in Fremdsprachen

14.09.2017 | Informationstechnologie