Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Kapitel bei der Suche nach Dunkler Materie

11.11.2015

Im Universum muss es fünfmal mehr Dunkle Materie als die uns bekannte sichtbare Materie geben. Es ist aber immer noch unbekannt, woraus diese Dunkle Materie besteht. Heute hat ein internationales Wissenschaftlerteam im Gran-Sasso-Untergrundlabor in Italien das XENON1T-Instrument eingeweiht, das bei der Suche nach Dunkler Materie ein neues Kapitel aufschlägt.

Dunkle Materie ist ein wesentlicher Bestandteil des Universums, und seit Jahrzehnten wird mit Laborexperimenten danach gesucht. Allerdings konnte bis heute Dunkle Materie nur indirekt beobachtet werden, nämlich über ihre Schwerkraft, die alle Bewegungen von Sternen und Galaxien dominiert. Die Indizien deuten darauf hin, dass Dunkle Materie aus einer unbekannten Art von stabilen Elementarteilchen, sogenannten WIMPs besteht, die sich bisher der Beobachtung entzogen haben.


XENON1T im LNGS: rechts das Gebäude, das die Xenon-Aufbereitung sowie die Experimentsteuerung und Datenerfassung beherbergt, links der große Wassertank, in dessen Mitte der Detektor installiert ist.

XENON Collaboration


Montage des XENON1T-Detektors im Reinraum.

XENON Collaboration

WIMPs wären Geisterteilchen ähnlich wie Neutrinos, die ursprünglich auch auf Grund von Indizien postuliert wurden. „Wir gehen davon aus, dass etwa Hunderttausend Dunkle-Materie-Teilchen pro Sekunde die Fläche eines Daumennagels durchströmen“, sagt Prof. Manfred Lindner, Direktor am Max-Planck-Institut für Kernphysik in Heidelberg.

„Die Wahrscheinlichkeit, dass sie mit den Atomen in unserem Detektor wechselwirken, muss aber äußerst gering sein – sonst hätten wir sie schon gefunden. Der Bereich, in dem WIMPs sichtbar werden sollten, wurde bisher aber auch noch nicht umfassend abgesucht. Deshalb brauchen wir XENON1T, ein viel empfindlicheres Instrument, welches tief in den Bereich vordringt, in dem die seltenen Signale erwartet werden.“

Der Detektor wurde von der internationalen XENON-Kollaboration gebaut, der 21 Forschungsgruppen aus den USA, Deutschland, Italien, der Schweiz, Portugal, Frankreich, den Niederlanden, Schweden, Israel und Abu Dhabi angehören, und die heute die Einweihung ihres neuen XENON1T-Instruments gefeiert hat.

Die Feier mit Vertretern der geldgebenden Institutionen und Journalisten fand in den Laboratori Nazionali del Gran Sasso (LNGS) in Italien, einem der größten Untergrundlabors der Welt, statt. Etwa 80 Gäste versammelten sich zur Zeremonie in der 110 m langen, 15 m breiten und 15 m hohen Halle B des LNGS direkt beim XENON1T-Instrument. „Unser Detektor befindet sich unter 1400 m Gestein, um ihn vor der kosmischen Strahlung zu schützen“, erklärt Prof. Uwe Oberlack von der Johannes-Gutenberg-Universität in Mainz den Standort des Instruments.

„Selbst in solcher Tiefe benötigen wir noch einen das Experiment umgebenden Schutz aus 750 Kubikmeter hochreinem Wasser, der verbleibende kosmische Strahlung durch winzige Lichtblitze anzeigt und umgebende Radioaktivität abschirmt.“ Bei der vorausgehenden Einführungsveranstaltung im Hörsaal des LNGS mit weiteren Gästen wurden in Vorträgen die physikalische Motivation und Strategie des Projekts und der Aufbau des Detektors vorgestellt.

Kampf gegen kleinste Mengen an Umweltradioaktivität

Als Detektor für Dunkle Materie verwendet XENON1T 3,5 Tonnen des Edelgases Xenon als ultrareine Flüssigkeit bei –95 °C. „Um die seltenen Wechselwirkungen von Dunkle-Materie-Teilchen im Detektor zu finden, brauchen wir eine große Menge Detektormaterial und eine extrem hohe radioaktive Reinheit“, erläutert Prof. Christian Weinheimer von der Westfälischen Wilhelms-Universität Münster, „sonst hätten wir keine Chance, die echten Signale unter den Störsignalen zu finden.“

Deshalb haben die XENON-Wissenschaftler alle Materialien zum Bau des Instruments sorgfältig auf ihren Gehalt an radioaktiven Verunreinigungen untersucht und die reinsten ausgewählt. Er fügt hinzu: „Objekte völlig ohne Radioaktivität existieren nicht; winzige Spuren von Radioaktivität sind überall vorhanden, in Metallen, in den Wänden des Labors und selbst in unserem Körper. Wir setzen alles daran, diese radioaktiven Verunreinigungen so weit wie möglich zu reduzieren.“

Die XENON-Forscher messen extrem schwache Licht- und Ladungssignale, aus denen sie den Ort der Wechselwirkung im Detektor rekonstruieren, außerdem die freigesetzte Energie. Nur Signale aus der innersten 1 Tonne des flüssigen Xenons werden als möglicherweise von Dunkle-Materie-Teilchen verursacht angesehen. Das Licht wird von 248 Lichtsensoren registriert, die so empfindlich sind, dass sie einzelne Photonen nachweisen können.

Sie befinden sich zusammen mit dem tiefkalten flüssigen Xenon in einer Art riesiger Thermoskanne, dem Kryostaten. Reinigung und Verflüssigung des Xenon-Gases erfolgen in dem dreistöckigen XENON-Gebäude neben dem großen Wassertank. Im Erdgeschoss steht eine riesige Stahlkugel mit Rohrleitungen und Ventilen. „Dieses ReStoX genannte System kann 7,6 Tonnen Xenon sowohl gasförmig als auch flüssig aufnehmen“, sagt Uwe Oberlack.

„Das ist mehr als die für XENON1T benötigte Menge, aber wir wollen darauf vorbereitet sein, in Zukunft erforderlichenfalls rasch die Empfindlichkeit des Detektors durch eine Erweiterung mit einer größeren Menge Xenon steigern zu können.“

Hoffen auf ein Dunkle-Materie-Signal

„Die Einweihung findet genau zur Fertigstellung des neuen Instruments statt“, freut sich Christian Weinheimer, „und wir sind schon dabei, die Funktion der Komponenten zu testen. In Betrieb ist XENON1T dann das weltweit empfindlichste Experiment zur Suche nach der Dunklen Materie.“ Erste Ergebnisse werden schon im Frühjahr 2016 erwartet, weil XENON1T bereits nach einer Woche Messzeit alle bisherigen Experimente übertreffen wird. Nach 2 Jahren Messzeit wird die Leistungsfähigkeit des Instruments ausgeschöpft sein, wie eine eben veröffentliche Studie ergeben hat. „Natürlich wollen wir Dunkle Materie finden“, sagt Manfred Lindner, „aber selbst wenn wir nach 2 Jahren nur einige Hinweise gefunden haben, sind wir in einer ausgezeichneten Position, weil wir das Instrument schnell auf XENONnT ausbauen können, um auch die letzten Reste des WIMP-Bereichs abzudecken.“ Dafür reicht die bestehende Infrastruktur großenteils aus.


An der internationalen XENON-Kollaboration sind aus Deutschland das Max-Planck-Institut für Kernphysik (MPIK) in Heidelberg, die Johannes-Gutenberg-Universität Mainz und die Westfälische Wilhelms-Universität Münster beteiligt. Auswahl und Kontrolle von Detektormaterialien mit extrem niedriger Radioaktivität, Entwicklung und Test der Lichtsensoren sowie das Xenon-Target liegen im Verantwortungsbereich des MPIK. Die Gruppe an der Universität Mainz ist für den Myon-Detektor zuständig. Sie ist ferner am innovativen Xenon-Lagersystem ReStoX sowie am inneren Detektor beteiligt. Die Forscher der Universität Münster zeichnen für die Reinigung des Xenons verantwortlich und haben dafür den Reinigungskreislauf und eine einzigartige Tieftemperatur-Destillationsanlage entwickelt. Alle drei Institute werden sich bei der Datennahme und -analyse sowie der Kalibration engagieren.


Kontakt:

Max-Planck-Institut für Kernphysik:
Prof. Dr. Manfred Lindner
Tel.: 06221 516 800
Fax.: 06221 516 802
E-Mail: lindner (at) mpi-hd.mpg.de

Johannes-Gutenberg-Universität Mainz:
Prof. Dr. Uwe Oberlack
Tel.: 06131 3925167
Fax.: 06131 3925169
E-Mail: oberlack (at) uni-mainz.de

Westfälische Wilhelms-Universität Münster:
Prof. Dr. Christian Weinheimer
Tel.: 0251 8334971
Fax.: 0251 8334962
E-Mail: weinheim (at) uni-muenster.de

Weitere Informationen:

http://xenon1t.org/ - Webseiten von XENON1T

Dr. Bernold Feuerstein | Max-Planck-Institut für Kernphysik
Weitere Informationen:
http://www.mpi-hd.mpg.de

Weitere Berichte zu: Kernphysik MPIK Materie Max-Planck-Institut Radioaktivität Xenon

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften