Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Ionen-Pingpong magische Neutronenzahl exotischer Atomkerne bestätigt

21.05.2015

Einem internationalen Wissenschaftlerteam ist es erstmals gelungen, die Bindungsenergien von Atomkernen der exotischen Kaliumisotope 52K und 53K massenspektrometrisch zu bestimmen. Die Messungen am europäischen Forschungszentrum CERN erfolgten mit einem an der Universität Greifswald gebauten Flugzeitspektrometer. Die Resultate ergänzen Untersuchungsergebnisse, die vor zwei Jahren bei den entsprechenden Calciumisotopen erzielt wurden. Sie bestätigen die damals ermittelte neue magische Neutronenzahl N=32. Über die Messergebnisse und begleitende theoretische Berechnungen berichtet das internationale Fachmagazin Physical Review Letters in seiner jüngsten Ausgabe (22. Mai 2015).

Alle Atome bestehen aus einer Elektronenhülle und einem Kern aus Protonen und Neutronen. Die Anzahl der Protonen bestimmt die Zugehörigkeit zu dem jeweiligen chemischen Element, die der Neutronen die Isotopenart. Nur wenige der bekannten Atomkerne sind völlig stabil.


Marco Rosenbusch an einem ähnlichen Multireflektions-Flugzeit-Massenspektrometer im Institut für Physik der Universität Greifswald

Foto: Dr. Birgit Schabinger


Skizze des Multireflektions-Flugzeit-Massenspektrometers

Grafik: Frank Wienholtz

Die meisten zerfallen unter Abgabe radioaktiver Strahlen. Aber die Instabilität kommt in unterschiedlicher Ausprägung vor. Maß der Stabilität ist die Bindungsenergie der Protonen und Neutronen im Kern. Diese können sich, ähnlich wie die Elektronen der Atomhülle, in verschiedenen Schalen aufhalten.

Kerne mit abgeschlossenen Schalen, wie für stabiles Calcium, Zinn oder Blei bei den Protonenzahlen 20, 50 bzw. 82, haben vergleichsweise hohe Bindungsenergien oder mit anderen Worten: Die Energie, die man benötigt, um ein Proton zu entfernen, ist deutlich größer als bei ihren „Nachbarn“, die nur ein oder wenige weitere Protonen in der nächsten Schale besitzen. Mit den Neutronen verhält es sich genauso.

Im Zusammenhang mit diesen besonderen schalenstabilisierten Kernen spricht man auch von den „magischen“ Protonen- und Neutronenzahlen. Im Bereich der stabilen und langlebigen Kerne sind diese magischen Zahlen, nämlich 8, 20, 28, 50, 82 und 126, schon seit Jahrzehnten bekannt.

Inzwischen zeigt sich aber, dass die Stabilitätsverhältnisse – und damit auch die Werte der magischen Zahlen – umso größeren Veränderungen unterworfen sind, je weiter man in die Gebiete der exotischen Kerne vorstößt. Als exotische Kerne bezeichnet man die kurzlebigen, d. h. solche, die schon in wenigen Stunden, Minuten, Sekunden oder nur Bruchteilen davon zerfallen.

Vor zwei Jahren konnte mit dem Spektrometer ISOLTRAP am CERN ein neuer Neutronenschalenabschluss massenspektrometrisch nachgewiesen werden. Das ISOLTRAP-Team besteht aus Wissenschaftlern des CERN, des Max-Planck-Instituts für Kernphysik in Heidelberg, des Helmholtzzentrums für Schwerionenforschung in Darmstadt, des Helmholtz-Instituts Mainz sowie von Universitäten in Dresden, Greifswald, Istanbul (Türkei), Leuven (Belgien) und Orsay (Frankreich). Damals wurden die Massen und damit die Bindungsenergien der exotischen Calciumisotope mit 33 und 34 Neutronen untersucht.

Es zeigte sich, dass diese Isotope besonders kleine Neutronenseparationsenergien besitzen, das heißt, dass der Energieaufwand zum Abtrennen eines beziehungsweise zweier Neutronen besonders klein ist, verglichen mit dem Calciumisotop mit 32 Neutronen. Damit konnte die Neutronenzahl N=32 als magische Zahl für exotische Calciumkerne sicher bestimmt werden.

Allerdings blieb die spannende Frage, ob es sich hier um einen Einzelfall handelt oder eine weitergehende Systematik vorliegt, das heißt ob dieser Neutronenschalenabschluss auch bei anderen Elementen vorliegt. Immerhin ist ja Calcium ein besonderes Element, da schon seine Protonenzahl, nämlich Z=20, magisch ist. Das ISOLTRAP-Team knüpfte jetzt hier an, indem es die Calcium-Untersuchungen auf das Nachbarelement Kalium erweiterte. Dessen Atome besitzen ein Proton weniger, also Z=19. Wieder mussten die Kerne mit N=33 und 34 Neutronen untersucht werden.

Allerdings war jetzt der Neutronenüberschuss gegenüber den Protonen noch größer als schon beim Calcium. Dieser Überschuss ist ebenfalls ein Maß dafür, wie exotisch die Kerne sind. Hatten schon die beiden Calciumisotope Halbwertszeiten von nur einer halben bzw. einer zehntel Sekunde, so verringerten sie sich nun beim Kalium auf nur eine zehntel bzw. eine dreißigstel Sekunde. Als besondere Herausforderung kam hinzu, dass es schwieriger wurde, diese Teilchen in ausreichender Anzahl durch Kernreaktionen für die Massenmessungen zu erzeugen.

Aber sowohl die kurze Halbwertszeit als auch die geringe Teilchenzahl reichten immer noch aus für die Präzisionsmessungen mit dem „Multireflexions-Flugzeitmassenspektrometer“, das von den Greifswalder Partnern zur ISOLTRAP-Apparatur beigesteuert wurde. Dessen Messprinzip, die Flugzeitmassenmethode, ist schnell erklärt: Alle Ionen erfahren die gleiche Kraft und werden daher bei unterschiedlicher Masse entsprechend unterschiedlich beschleunigt, analog zur großen Beschleunigung eines leichten Sportwagens im Vergleich zu der eines schweren Lastkraftwagens, auch wenn beide über eine gleich hohe Motorleistung verfügen.

Die unterschiedlichen Beschleunigungen führen zu entsprechenden Geschwindigkeiten in einer kräftefreien Driftstrecke, und die Teilchen kommen gemäß ihren Massen nacheinander am Detektor an – zunächst die leichten und später die schweren: So entsteht ein Massenspektrum. Bei den meisten Flugzeitmassenspektrometern beschränken sich die Driftstrecken auf etwa einen Meter Länge.

Beim ISOLTRAP-Spektrometer wird aber ein Trick angewendet: Die zu untersuchenden Teilchen werden zwischen zwei „Ionenspiegeln“ mehrere hundert bis tausend Mal hin und her reflektiert. So können in der Messapparatur trotz einer Länge von nur einem Meter kilometerlange Driftstrecken erreicht werden. Und dieses „Ionen-Pingpong“ dauert nur wenige Millisekunden – ein weiterer Vorteil gegenüber alternativen Methoden der Massenmessung. (siehe auch: Medieninformation „Mit Ionen-Pingpong Kräfte in Atomkernen sichtbar gemacht“ http://idw-online.de/de/news539615)

Begleitend zu den ISOLTRAP-Experimenten haben Kollegen in Frankreich, Großbritannien und Kanada theoretische Untersuchungen zu den Kaliumkernen durchgeführt. Auch hierbei gab es im Vergleich zum Calcium vor zwei Jahren neue Herausforderungen, insbesondere aufgrund der ungeraden Protonenzahl. Die jetzt verwendeten neuesten Berechnungsmethoden, die auf sogenannten Gorkov-Green-Funktionen basieren, führten zu einer guten Übereinstimmung mit den Messwerten.

Mit den bisherigen Experimenten sind die Untersuchungen der magischen Neutronenzahl N=32 bei weitem noch nicht abgeschlossen. Insbesondere besteht ein großes Interesse an Messungen bei Scandium und den nächsten Nachbarelementen. Darüber hinaus darf man auf Meldungen von weiteren neuen magischen Zahlen in anderen Bereichen der Nuklidkarte gespannt sein.

Weitere Informationen:

Originalveröffentlichung
Probing the N = 32 shell closure below the magic proton number Z = 20: Mass measurements of the exotic isotopes 52,53K, M. Rosenbusch, P. Ascher, D. Atanasov, C. Barbieri, D. Beck, K. Blaum, Ch. Borgmann, M. Breitenfeldt, R.B. Cakirli, A. Cipollone, S. George, F. Herfurth, M. Kowalska, S. Kreim, D. Lunney, V. Manea, P. Navrátil, D. Neidherr, L. Schweikhard, V. Somà, J. Stanja, F. Wienholtz, R.N. Wolf, K. Zuber, Phys. Rev. Lett. Phys. Rev. Lett. 114, 202501 (2015) (2015)
DOI: http://dx.doi.org/10.1103/PhysRevLett.114.202501

Abbildung 1: Skizze des Multireflektions-Flugzeit-Massenspektrometers; angedeutet ist ein von links kommender Puls aus drei verschiedenen Ionensorten, die sich nach wiederholten Umlaufen zwischen den Ionenspiegeln trennen (angedeutet als gelbe, grüne und rote Pulse), bevor die Zeiten ihres Eintreffens in einem Ionendetektor (rechts) gemessen werden.
Abbildung 2: „Ionen-Pingpong“.
Abbildung 1 und 2: Frank Wienholtz

Foto: Marco Rosenbusch an einem ähnlichen Multireflektions-Flugzeit-Massenspektrometer im Institut für Physik der Universität Greifswald
Foto: Dr. Birgit Schabinger

Das Foto und die Abbildungen können für redaktionelle Zwecke im Zusammenhang mit dieser Pressemitteilung kostenlos heruntergeladen und genutzt werden. Dabei ist der Name der Autoren oder der Fotografin zu nennen. Download http://www.uni-greifswald.de/informieren/pressestelle/pressefotos/pressefotos-2015/pressefotos-mai-2015.html

Veröffentlichungen zum Thema
http://idw-online.de/de/news539615 Mit Ionen-Pingpong Kräfte in Atomkernen sichtbar gemacht
http://idw-online.de/en/news539611 Ion ping pong reveals forces in atomic nuclei
http://idw-online.de/de/news516617 Präzisionsmassenmessung im Labor gewährt Blick in die Kruste von Neutronensternen
http://idw-online.de/en/news516628 Laboratory Mass Measurement deepens Insight into Neutron Star Crusts

Ansprechpartner

Dipl.-Phys. Marco Rosenbusch und Prof. Dr. Lutz Schweikhard
Institut für Physik
Ernst-Moritz-Arndt-Universität Greifswald
Felix-Hausdorff-Straße 6, 17489 Greifswald
Telefon 03834 86-4700
rosenbusch@physik.uni-greifswald.de bzw. lschweik@physik.uni-greifswald.de
http://www6.physik.uni-greifswald.de/index.html

Sprecher der ISOLTRAP-Kollaboration
Prof. Dr. Klaus Blaum
Max-Planck-Institut für Kernphysik
Saupfercheckweg 1, 69117 Heidelberg
Telefon 06221 516850
klaus.blaum@mpi-hd.mpg.de
http://www.mpi-hd.mpg.de/blaum/index.de.html

Leiter der ISOLTRAP-Gruppe am CERN
Dr. Vladimir Manea und Dipl.-Phys. Frank Wienholtz
CERN, bat. 3-1-070, 1211 Genf 23, SCHWEIZ
Telefon +41 22 76 72289 bzw. 72646
vladimir.manea@cern.ch bzw. wienholtz@physik.uni-greifswald.de
http://isoltrap.web.cern.ch/

Jan Meßerschmidt | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie