Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gitter aus Nanofallen und Verringerung der Linienbreite in einem Raman-aktiven Gas

08.02.2017

Die Verringerung der Emissionslinienbreite eines Moleküls ist eines der Hauptziele der Präzisionsspektroskopie. Eine Möglichkeit ist die Lokalisierung der Moleküle auf der Subwellenlängenskala. Ein neuartiger Ansatz in dieser Richtung wurde kürzlich von einem Team des Max-Born-Instituts und des Xlim Instituts in Limoges vorgeschlagen. Dieser Ansatz verwendet zur Lokalisierung eine stehende Welle in einer gasgefüllten Hohlfaser. Sie erzeugt für Raman-aktive Moleküle ein Gitter aus tiefen Fallen auf Nanometer-Skala, was zu einer Verringerung der Linienbreite um den Faktor 10 000 führt.

Die Strahlung, die von Atomen und Molekülen emittiert wird, wird üblicherweise durch die Bewegung der Emitter spektral verbreitert, ein Effekt, der Dopplerverbreitung genannt wird. Die Überwindung dieses Effekts ist eine schwierige Aufgabe, insbesondere für Moleküle. Eine Möglichkeit, die molekulare Bewegung zu reduzieren, besteht darin, tiefe Potentialfallen mit kleinen Dimensionen zu erzeugen. Bisher wurde dies - allerdings mit begrenztem Erfolg - dadurch erreicht, dass z.B. mehrere gegenläufige Strahlen in einem komplizierten Aufbau angeordnet wurden.


Das Pumplicht wandelt sich auf der makroskopischen Skala in nach vorne gerichtete Stokes-Strahlung um, die teilweise vom Faserende reflektiert wird.

Bild: MBI

Die Forscher der Kooperation zwischen Max-Born-Institut und Xlim-Institut zeigen, dass die Subwellenlängen-Lokalisierung und die Verringerung der Linienbreite in einer sehr einfachen Anordnung durch Selbstorganisation von Raman-aktivem Gas (molekularem Wasserstoff) in einer kristallinen, photonischen Hohlfaser möglich sind. Raman-Streuung wandelt das Pumplicht in sogenannte Stokes-Seitenbänder um.

Durch Reflexionen an den Faserenden laufen diese Seitenbänder in der Faser hin und her und bilden ein stationäres Interferenzmuster: eine stehende Welle mit alternierenden Bereichen von hohem und niedrigem Lichtfeld [Abb. 1]. In den Hochfeldregionen ist der Raman-Übergang gesättigt und nicht aktiv. Die Moleküle haben eine hohe potentielle Energie, da sie teilweise im angeregten Zustand sind. In der Niedrigfeldregion sind die Moleküle Raman-aktiv.

Sie haben eine niedrige Potentialenergie, da sie nahe am Grundzustand sind. Diese Niedrigfeldregionen bilden ein Gitter von etwa 40 000 schmalen, starken Fallen, die lokalisierte Raman-aktive Moleküle enthalten. Die Größe dieser Fallen beträgt etwa 100 nm (1 nm = 10⁻⁹ m), was viel kleiner ist als die Lichtwellenlänge von 1130 nm. Daher haben die emittierten Stokes-Seitenbänder eine sehr schmale Spektralbreite von nur 15 kHz - 10 000 mal schmaler als die doppelverbreiterten Seitenbänder unter den gleichen Bedingungen!

Die Selbstorganisation des Gases manifestiert sich auch auf der makroskopischen Skala. Zunächst zeigen die Berechnungen, dass der Raman-Prozess hauptsächlich genau in dem Faserabschnitt stattfindet, in dem die stehende Welle gebildet wird, wie im oberen Teil von Abb. 1 gezeigt ist. Weiterhin führt der makroskopische Gradient des Potentials zur Strömung des Gases zu den Faserenden, was mit bloßem Auge im Experiment beobachtet werden kann.

Diese starke Lokalisierung und die Verengung der Linienbreite können zu verschiedenen Anwendungen z.B. in der Spektroskopie führen. Es kann aber auch als ein Verfahren zur periodischen Modulation der Gasdichte verwendet werden, was für die Entwicklung von quasi-phasenangepassten Anordnungen für weitere nichtlineare Prozesse geeignet ist wie z.B. zur effektiven Erzeugung von hohen Harmonischen.

Abb. 1: Das Pumplicht wandelt sich auf der makroskopischen Skala in nach vorne gerichtete Stokes-Strahlung (FS) um, die teilweise vom Faserende reflektiert wird und zu rückwärts gerichteter Stokes-Strahlung (BS) wird. Letztere wird ebenfalls durch das Pumplicht verstärkt. In dem Gebiet, in dem sowohl FS als auch BS stark sind, bilden sie ein Interferenzmuster der stehenden Welle, das auf der mikroskopischen Skala dargestellt ist. In den Niedrigfeldbereichen (durch rotgefärbte Moleküle gekennzeichnet) befinden sich die Moleküle im Grundzustand und sind stark lokalisiert, wie das Potential im unteren Teil zeigt. Genau diese "gefangenen" Moleküle sind Raman-aktiv, was zur Verringerung der Linienbreite führt.

Originalpublikation: Nature Communications 7, 12779 (2016) doi:10.1038/ncomms12779
"Raman gas self-organizing into deep nano-trap lattice"
M. Alharbi, A. Husakou, M. Chafer, B. Debord, F. Gérôme und F. Benabid

Kontakt:
Max-Born-Institut im Forschungsverbund Berlin e.V.
Max-Born-Straße 2A
12489 Berlin
Dr. Anton Husakou
Tel. 030 6392 1280
gusakov@mbi-berlin.de

Weitere Informationen:

http://www.mbi-berlin.de

Karl-Heinz Karisch | Forschungsverbund Berlin e.V.

Weitere Berichte zu: Gitter Interferenzmuster Linienbreite Moleküle Strahlen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern
20.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht Rätselhaftes IceCube-Ereignis könnte von Tau-Neutrino stammen
19.06.2018 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Revolution der Rohre

Forscher*innen des Instituts für Sensor- und Aktortechnik (ISAT) der Hochschule Coburg lassen Rohrleitungen, Schläuchen oder Behältern in Zukunft regelrecht Ohren wachsen. Sie entwickelten ein innovatives akustisches Messverfahren, um Ablagerungen in Rohren frühzeitig zu erkennen.

Rückstände in Abflussleitungen führen meist zu unerfreulichen Folgen. Ein besonderes Gefährdungspotential birgt der Biofilm – eine Schleimschicht, in der...

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

Hengstberger-Symposium zur Sternentstehung

19.06.2018 | Veranstaltungen

LymphomKompetenz KOMPAKT: Neues vom EHA2018

19.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungsnachrichten

Breitbandservices von DNS:NET erweitert

20.06.2018 | Unternehmensmeldung

Mit Parasiten infizierte Stichlinge beeinflussen Verhalten gesunder Artgenossen

20.06.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics