Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erstaunliches Verhalten in Hochtemperatursupraleitern beobachtet

20.10.2014

Neuer Effekt möglicherweise wichtig für grundsätzliches Verständnis

Ein international besetztes Forschungsteam hat in Experimenten am Paul Scherrer Institut PSI ein neues unerwartetes Verhalten in kupferbasierten Hochtemperatursupraleitern beobachtet. Die Erklärung des neuen Phänomens – einer unerwarteten Form gemeinsamer Bewegung der elektrischen Ladungen – stellt für die Forschenden eine grosse Herausforderung dar. Sollte sie gelingen, könnte das einen wichtigen Schritt zum Verständnis der Hochtemperatursupraleitung an sich darstellen.


Die PSI-Forschenden Thorsten Schmitt und Yaobo Huang an der ADRESS-Strahllinie der SLS

Foto: Paul Scherrer Institut/Mahir Dzambegovic

Trotz ihres Namens müssen Hochtemperatursupraleiter stark gekühlt werden, um supraleitend zu werden. Der Name rührt daher, dass die nötigen Temperaturen in der Regel nicht ganz so niedrig sind wie bei den länger bekannten konventionellen Supraleitern. „Materialien, die auch bei Zimmertemperatur supraleitend wären, könnten helfen, viel Energie zu sparen“, erklärt Thomas Devereaux, Leiter des Forschungsteams aus Stanford. „Aber um solche Materialien zu entwickeln, müssen wir verstehen, was im Inneren der Materialien geschieht, wenn sie supraleitend werden. Unsere neusten Forschungsergebnisse tragen ein Puzzle-Stück zu diesem Verständnis bei.“
Kupferoxid – ein keramisches Material – leitet normalerweise keinen Strom. Es kann aber zum Supraleiter werden, wenn man einen kleinen Teil der vorhandenen Atome durch Atome bestimmter anderer Elemente ersetzt, sodass die Zahl der beweglichen Elektronen im Material grösser oder kleiner wird – ein Verfahren, das man als Dotierung bezeichnet. Zusätzlich muss man das Material noch stark kühlen. Wie stark man das Material kühlen muss, hängt erstaunlicherweise davon ab, welche Art Atome man hinzugefügt hat: Waren es solche, die zusätzliche Elektronen liefern, muss man auf 30 Kelvin, also 30 Grad über dem absoluten Nullpunkt kühlen. Fügt man aber Atome bei, die die Zahl der Elektronen reduzieren, reicht es, auf 120 Kelvin zu kühlen. Ein Ziel des beschriebenen Forschungsprojekts war es, den Grund für dieses unterschiedliche Verhalten unter Dotierung herauszubekommen.

Zeigen wie sich die Ladungsträger bewegen

Um zu bestimmen, wie sich die Eigenschaften des Materials durch die Dotierung ändern, nutzten die Forschenden eine moderne Experimentiertechnik mit Röntgenlicht – die resonante inelastische Röntgenstreuung RIXS. Die Experimente wurden am RIXS-Instrument an der Synchrotron Lichtquelle Schweiz SLS des Paul Scherrer Instituts PSI durchgeführt. „Diese Anlage hat die zurzeit höchste Auflösung weltweit und kann zeigen, wie sich die Elektronen unter Anregung durch Röntgenlicht bewegen“, so Thorsten Schmitt, der für die Anlage verantwortliche Wissenschaftler am PSI. „Bei einem RIXS-Experiment strahlt man Röntgenlicht auf die Probe. Dies regt in der Probe eine magnetische Welle – eine Spinwelle – an. Dabei gibt das Röntgenlicht einen Teil seiner Energie an die magnetische Welle ab. Vergleicht man die Energie des eingestrahlten Röntgenlichts mit jener des von der Probe gestreuten Röntgenlichts, erhält man Informationen über die Eigenschaften der angeregten magnetischen Welle (insbesondere deren Energie). Nirgendwo sonst auf der Welt kann die Energie solcher Anregungen so genau gemessen werden wie an unserem RIXS-Instrument am PSI.“
Die Anregungen – oder Wellen – breiten sich durch das Material aus, wenn sich irgendwo eine Eigenschaft des Materials verändert. Bei den veränderten Eigenschaften kann es sich um die Verteilung der elektrischen Ladungen oder, wie hier, um die magnetische Ordnung im Material handeln. Eine magnetische Ordnung kann entstehen, weil sich Elektronen im Inneren mancher Materialien wie winzige Magnete verhalten. Sind diese Magnete in einem regelmässigen Muster angeordnet, hat man eine magnetische Ordnung. In dieser Ordnung können Wellen angeregt werden, wenn einzelne Magnete aus ihrer Position ausgelenkt werden und wenn sich diese Auslenkung von Magnet zu Magnet fortpflanzt. Dabei breitet sich die Anregung nicht unbedingt in der gleichen Richtung aus, in der die einzelnen Magnete ausgelenkt werden – so wie eine Wasserwelle sich entlang der Wasseroberfläche fortpflanzt, obwohl sich die einzelnen Wassermoleküle nur auf und ab bewegen. Für die magnetische wie für die Wasserwelle ist vor allem die Ausbreitungsrichtung der Welle als Ganzes wichtig. Das ist nämlich die Richtung, in der die Welle Energie transportiert, was im Fall der Wasserwelle zum Beispiel von Surfern ausgenutzt wird.

Experiment zeigt Erstaunliches

Die Experimente zeigten zweierlei Erstaunliches: „Zum einen nahm in den untersuchten Materialien mit Elektronenüberschuss die magnetische Energie, die von den Anregungen transportiert wurde, in unerwartet hohem Ausmass zu. Zum anderen wurde in ebendiesen Materialien die Entstehung neuer kollektiver Anregungen - einer spezielle Form gemeinsamer Bewegung der elektrischen Ladungen - festgestellt“, berichtet Wei-Sheng Lee, Erstautor der Veröffentlichung. „Es ist jedoch rätselhaft, warum man diese Phänomene in den elektronenarmen Materialien nicht beobachtet, denn eigentlich würde man in diesen ein ähnliches Verhalten erwarten wie in den Materialien mit Elektronenüberschuss.“

Die neue Entdeckung ist ein weiterer Schritt auf dem langen und mühsamen Weg hin zum Verständnis der Hochtemperatursupraleitung. Seit den 1950er-Jahren wissen Wissenschaftler, warum bestimmte Metalle und einfache Legierungen supraleitend werden, wenn man sie auf wenige Grad über dem absoluten Temperaturnullpunkt kühlt. Ihre Elektronen finden sich zu Paaren zusammen, die von atomaren Schwingungen zusammengehalten werden, die wie eine Art virtueller Klebstoff wirken. Oberhalb einer bestimmten Temperatur hält der Klebstoff nicht mehr, weil die immer stärkere Bewegung der Atome in dem Supraleiter die Elektronen voneinander trennt und so die Supraleitung zum Verschwinden bringt.

Seit 1986 haben Forschende eine Reihe neuartiger Materialien entdeckt, die bei höheren Temperaturen (etwa 30 bis 120 Kelvin) supraleitend werden – die sogenannten Hochtemperatursupraleiter. Nun erhofft man sich, dass man langfristig Supraleiter erzeugen kann, die bei Zimmertemperatur oder sogar noch höheren Temperaturen supraleitend werden, wenn man besser versteht, wie diese Materialien funktionieren.

Wie Elektronen zu Paaren zusammenfinden

Doch noch ist unklar, wie die Paarung der Elektronen in Hochtemperatursupraleitern genau zustande kommt. Bis vor kurzem ist man davon ausgegangen, dass die Elektronenpaare bei höheren Temperaturen von starken magnetischen Anregungen zusammengehalten werden, die durch Wechselwirkungen zwischen den Spins der Elektronen erzeugt werden. Neuste Computerberechnungen, die Forschende vom SLAC und der Universität Stanford erarbeitet haben, zeigen aber, dass die hochenergetischen magnetischen Wechselwirkungen nicht alleine für die Bildung von Elektronenpaaren und somit für die Hochtemperatursupraleitung verantwortlich sind.
Lee betont, dass auch nach den jüngsten Ergebnissen unklar ist, ob die neu beobachteten, kollektiven Anregungen der elektrischen Ladungen einen Zusammenhang mit der Paarung der Elektronen in den untersuchten Hochtemperatursupraleitern haben. Man weiss denn auch nicht, ob der neue Effekt für die Supraleitung in den untersuchten Materialien förderlich oder eher hinderlich ist.
„Theoretische Physiker werden nun die neuen Ergebnisse in ihren Erklärungen zur Entstehung der Hochtemperatursupraleitung berücksichtigen müssen“, sagt Thorsten Schmitt.

An der Arbeit beteiligt waren auch Forschende der folgenden Institutionen: Columbia University, University of Minnesota, Wissenschaftlich-Technische Universität AGH (Polen), National Synchrotron Radiation Research Center und National Tsing Hua University in Taiwan, und Chinesische Akademie der Wissenschaften. Die Forschung wurde finanziell gefördert vom Schweizerischen Nationalfonds SNF, dem Office of Science [Basic Energy Sciences] des Department of Energy DOE, U.S. National Science Foundation. 

Über das PSI
Das Paul Scherrer Institut PSI entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Energie und Umwelt sowie Mensch und Gesundheit. Die Ausbildung von jungen Menschen ist ein zentrales Anliegen des PSI. Deshalb sind etwa ein Viertel unserer Mitarbeitenden Postdoktorierende, Doktorierende oder Lernende. Insgesamt beschäftigt das PSI 1900 Mitarbeitende, das damit das grösste Forschungsinstitut der Schweiz ist. Das Jahresbudget beträgt rund CHF 350 Mio.
 
Kontakt:
Dr. Thorsten Schmitt, Leiter der Gruppe Spektroskopie neuartiger Materialien
Labor für Synchrotronstrahlung – Kondensierte Materie
Paul Scherrer Institut, 5232 Villigen PSI, Schweiz
Telefon: +41 56 310 37 62, E-Mail: thorsten.schmitt@psi.ch

Originalveröffentlichung:
Asymmetry of collective excitations in electron-and hold-doped cuprate superconductors
W. S. Lee, J. J. Lee, E. A. Nowadnick, S. Gerber, W. Tabis, S.W. Huang, V. N. Strocov, E. M. Motoyama, G. Yu, B. Moritz, H. Y. Huang, R. P.Wang, Y. B. Huang, W. B.Wu, C. T. Chen, D. J. Huang, M. Greven, T. Schmitt, Z. X. Shen and T. P. Devereaux
Nature Physics, advance online publication 19 October 2014; DOI: 10.1038/nphys3117 Link: http://dx.doi.org/10.1038/nphys3117

Weitere Informationen:

http://psi.ch/Cd9N Darstellung der Mitteilung auf der PSI-Webseite. Enthält eine Animation.
http://www.psi.ch/lsc Labor für Synchrotronstrahlung – Kondensierte Materie (LSC)
http://www.psi.ch/sls/adress ADRESS-Strahllinie an der SLS

Dagmar Baroke | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Gravitationswellen als Sensor für Dunkle Materie
06.12.2016 | Max-Planck-Institut für Kernphysik

nachricht Neue Perspektiven durch gespiegelte Systeme
05.12.2016 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weiterbildung zu statistischen Methoden in der Versuchsplanung und -auswertung

06.12.2016 | Seminare Workshops

Bund fördert Entwicklung sicherer Schnellladetechnik für Hochleistungsbatterien mit 2,5 Millionen

06.12.2016 | Förderungen Preise

Innovationen für eine nachhaltige Forstwirtschaft

06.12.2016 | Agrar- Forstwissenschaften