Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erstaunliches Verhalten in Hochtemperatursupraleitern beobachtet

20.10.2014

Neuer Effekt möglicherweise wichtig für grundsätzliches Verständnis

Ein international besetztes Forschungsteam hat in Experimenten am Paul Scherrer Institut PSI ein neues unerwartetes Verhalten in kupferbasierten Hochtemperatursupraleitern beobachtet. Die Erklärung des neuen Phänomens – einer unerwarteten Form gemeinsamer Bewegung der elektrischen Ladungen – stellt für die Forschenden eine grosse Herausforderung dar. Sollte sie gelingen, könnte das einen wichtigen Schritt zum Verständnis der Hochtemperatursupraleitung an sich darstellen.


Die PSI-Forschenden Thorsten Schmitt und Yaobo Huang an der ADRESS-Strahllinie der SLS

Foto: Paul Scherrer Institut/Mahir Dzambegovic

Trotz ihres Namens müssen Hochtemperatursupraleiter stark gekühlt werden, um supraleitend zu werden. Der Name rührt daher, dass die nötigen Temperaturen in der Regel nicht ganz so niedrig sind wie bei den länger bekannten konventionellen Supraleitern. „Materialien, die auch bei Zimmertemperatur supraleitend wären, könnten helfen, viel Energie zu sparen“, erklärt Thomas Devereaux, Leiter des Forschungsteams aus Stanford. „Aber um solche Materialien zu entwickeln, müssen wir verstehen, was im Inneren der Materialien geschieht, wenn sie supraleitend werden. Unsere neusten Forschungsergebnisse tragen ein Puzzle-Stück zu diesem Verständnis bei.“
Kupferoxid – ein keramisches Material – leitet normalerweise keinen Strom. Es kann aber zum Supraleiter werden, wenn man einen kleinen Teil der vorhandenen Atome durch Atome bestimmter anderer Elemente ersetzt, sodass die Zahl der beweglichen Elektronen im Material grösser oder kleiner wird – ein Verfahren, das man als Dotierung bezeichnet. Zusätzlich muss man das Material noch stark kühlen. Wie stark man das Material kühlen muss, hängt erstaunlicherweise davon ab, welche Art Atome man hinzugefügt hat: Waren es solche, die zusätzliche Elektronen liefern, muss man auf 30 Kelvin, also 30 Grad über dem absoluten Nullpunkt kühlen. Fügt man aber Atome bei, die die Zahl der Elektronen reduzieren, reicht es, auf 120 Kelvin zu kühlen. Ein Ziel des beschriebenen Forschungsprojekts war es, den Grund für dieses unterschiedliche Verhalten unter Dotierung herauszubekommen.

Zeigen wie sich die Ladungsträger bewegen

Um zu bestimmen, wie sich die Eigenschaften des Materials durch die Dotierung ändern, nutzten die Forschenden eine moderne Experimentiertechnik mit Röntgenlicht – die resonante inelastische Röntgenstreuung RIXS. Die Experimente wurden am RIXS-Instrument an der Synchrotron Lichtquelle Schweiz SLS des Paul Scherrer Instituts PSI durchgeführt. „Diese Anlage hat die zurzeit höchste Auflösung weltweit und kann zeigen, wie sich die Elektronen unter Anregung durch Röntgenlicht bewegen“, so Thorsten Schmitt, der für die Anlage verantwortliche Wissenschaftler am PSI. „Bei einem RIXS-Experiment strahlt man Röntgenlicht auf die Probe. Dies regt in der Probe eine magnetische Welle – eine Spinwelle – an. Dabei gibt das Röntgenlicht einen Teil seiner Energie an die magnetische Welle ab. Vergleicht man die Energie des eingestrahlten Röntgenlichts mit jener des von der Probe gestreuten Röntgenlichts, erhält man Informationen über die Eigenschaften der angeregten magnetischen Welle (insbesondere deren Energie). Nirgendwo sonst auf der Welt kann die Energie solcher Anregungen so genau gemessen werden wie an unserem RIXS-Instrument am PSI.“
Die Anregungen – oder Wellen – breiten sich durch das Material aus, wenn sich irgendwo eine Eigenschaft des Materials verändert. Bei den veränderten Eigenschaften kann es sich um die Verteilung der elektrischen Ladungen oder, wie hier, um die magnetische Ordnung im Material handeln. Eine magnetische Ordnung kann entstehen, weil sich Elektronen im Inneren mancher Materialien wie winzige Magnete verhalten. Sind diese Magnete in einem regelmässigen Muster angeordnet, hat man eine magnetische Ordnung. In dieser Ordnung können Wellen angeregt werden, wenn einzelne Magnete aus ihrer Position ausgelenkt werden und wenn sich diese Auslenkung von Magnet zu Magnet fortpflanzt. Dabei breitet sich die Anregung nicht unbedingt in der gleichen Richtung aus, in der die einzelnen Magnete ausgelenkt werden – so wie eine Wasserwelle sich entlang der Wasseroberfläche fortpflanzt, obwohl sich die einzelnen Wassermoleküle nur auf und ab bewegen. Für die magnetische wie für die Wasserwelle ist vor allem die Ausbreitungsrichtung der Welle als Ganzes wichtig. Das ist nämlich die Richtung, in der die Welle Energie transportiert, was im Fall der Wasserwelle zum Beispiel von Surfern ausgenutzt wird.

Experiment zeigt Erstaunliches

Die Experimente zeigten zweierlei Erstaunliches: „Zum einen nahm in den untersuchten Materialien mit Elektronenüberschuss die magnetische Energie, die von den Anregungen transportiert wurde, in unerwartet hohem Ausmass zu. Zum anderen wurde in ebendiesen Materialien die Entstehung neuer kollektiver Anregungen - einer spezielle Form gemeinsamer Bewegung der elektrischen Ladungen - festgestellt“, berichtet Wei-Sheng Lee, Erstautor der Veröffentlichung. „Es ist jedoch rätselhaft, warum man diese Phänomene in den elektronenarmen Materialien nicht beobachtet, denn eigentlich würde man in diesen ein ähnliches Verhalten erwarten wie in den Materialien mit Elektronenüberschuss.“

Die neue Entdeckung ist ein weiterer Schritt auf dem langen und mühsamen Weg hin zum Verständnis der Hochtemperatursupraleitung. Seit den 1950er-Jahren wissen Wissenschaftler, warum bestimmte Metalle und einfache Legierungen supraleitend werden, wenn man sie auf wenige Grad über dem absoluten Temperaturnullpunkt kühlt. Ihre Elektronen finden sich zu Paaren zusammen, die von atomaren Schwingungen zusammengehalten werden, die wie eine Art virtueller Klebstoff wirken. Oberhalb einer bestimmten Temperatur hält der Klebstoff nicht mehr, weil die immer stärkere Bewegung der Atome in dem Supraleiter die Elektronen voneinander trennt und so die Supraleitung zum Verschwinden bringt.

Seit 1986 haben Forschende eine Reihe neuartiger Materialien entdeckt, die bei höheren Temperaturen (etwa 30 bis 120 Kelvin) supraleitend werden – die sogenannten Hochtemperatursupraleiter. Nun erhofft man sich, dass man langfristig Supraleiter erzeugen kann, die bei Zimmertemperatur oder sogar noch höheren Temperaturen supraleitend werden, wenn man besser versteht, wie diese Materialien funktionieren.

Wie Elektronen zu Paaren zusammenfinden

Doch noch ist unklar, wie die Paarung der Elektronen in Hochtemperatursupraleitern genau zustande kommt. Bis vor kurzem ist man davon ausgegangen, dass die Elektronenpaare bei höheren Temperaturen von starken magnetischen Anregungen zusammengehalten werden, die durch Wechselwirkungen zwischen den Spins der Elektronen erzeugt werden. Neuste Computerberechnungen, die Forschende vom SLAC und der Universität Stanford erarbeitet haben, zeigen aber, dass die hochenergetischen magnetischen Wechselwirkungen nicht alleine für die Bildung von Elektronenpaaren und somit für die Hochtemperatursupraleitung verantwortlich sind.
Lee betont, dass auch nach den jüngsten Ergebnissen unklar ist, ob die neu beobachteten, kollektiven Anregungen der elektrischen Ladungen einen Zusammenhang mit der Paarung der Elektronen in den untersuchten Hochtemperatursupraleitern haben. Man weiss denn auch nicht, ob der neue Effekt für die Supraleitung in den untersuchten Materialien förderlich oder eher hinderlich ist.
„Theoretische Physiker werden nun die neuen Ergebnisse in ihren Erklärungen zur Entstehung der Hochtemperatursupraleitung berücksichtigen müssen“, sagt Thorsten Schmitt.

An der Arbeit beteiligt waren auch Forschende der folgenden Institutionen: Columbia University, University of Minnesota, Wissenschaftlich-Technische Universität AGH (Polen), National Synchrotron Radiation Research Center und National Tsing Hua University in Taiwan, und Chinesische Akademie der Wissenschaften. Die Forschung wurde finanziell gefördert vom Schweizerischen Nationalfonds SNF, dem Office of Science [Basic Energy Sciences] des Department of Energy DOE, U.S. National Science Foundation. 

Über das PSI
Das Paul Scherrer Institut PSI entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Energie und Umwelt sowie Mensch und Gesundheit. Die Ausbildung von jungen Menschen ist ein zentrales Anliegen des PSI. Deshalb sind etwa ein Viertel unserer Mitarbeitenden Postdoktorierende, Doktorierende oder Lernende. Insgesamt beschäftigt das PSI 1900 Mitarbeitende, das damit das grösste Forschungsinstitut der Schweiz ist. Das Jahresbudget beträgt rund CHF 350 Mio.
 
Kontakt:
Dr. Thorsten Schmitt, Leiter der Gruppe Spektroskopie neuartiger Materialien
Labor für Synchrotronstrahlung – Kondensierte Materie
Paul Scherrer Institut, 5232 Villigen PSI, Schweiz
Telefon: +41 56 310 37 62, E-Mail: thorsten.schmitt@psi.ch

Originalveröffentlichung:
Asymmetry of collective excitations in electron-and hold-doped cuprate superconductors
W. S. Lee, J. J. Lee, E. A. Nowadnick, S. Gerber, W. Tabis, S.W. Huang, V. N. Strocov, E. M. Motoyama, G. Yu, B. Moritz, H. Y. Huang, R. P.Wang, Y. B. Huang, W. B.Wu, C. T. Chen, D. J. Huang, M. Greven, T. Schmitt, Z. X. Shen and T. P. Devereaux
Nature Physics, advance online publication 19 October 2014; DOI: 10.1038/nphys3117 Link: http://dx.doi.org/10.1038/nphys3117

Weitere Informationen:

http://psi.ch/Cd9N Darstellung der Mitteilung auf der PSI-Webseite. Enthält eine Animation.
http://www.psi.ch/lsc Labor für Synchrotronstrahlung – Kondensierte Materie (LSC)
http://www.psi.ch/sls/adress ADRESS-Strahllinie an der SLS

Dagmar Baroke | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Nanoinjektion steigert Überlebensrate von Zellen
22.02.2017 | Universität Bielefeld

nachricht Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung
21.02.2017 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Im Focus: Innovative Antikörper für die Tumortherapie

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig von diesen teuren Medikamenten profitieren, wird intensiv an deren Verbesserung gearbeitet. Forschern um Prof. Thomas Valerius an der Christian Albrechts Universität Kiel gelang es nun, innovative Antikörper mit verbesserter Wirkung zu entwickeln.

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig...

Im Focus: Durchbruch mit einer Kette aus Goldatomen

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

6. Internationale Fachkonferenz „InnoTesting“ am 23. und 24. Februar 2017 in Wildau

22.02.2017 | Veranstaltungen

Wunderwelt der Mikroben

22.02.2017 | Veranstaltungen

Der Lkw der Zukunft kommt ohne Fahrer aus

21.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Ursache für eine erbliche Muskelerkrankung entdeckt

22.02.2017 | Medizin Gesundheit

Möglicher Zell-Therapieansatz gegen Zytomegalie

22.02.2017 | Biowissenschaften Chemie

Meeresforschung in Echtzeit verfolgen

22.02.2017 | Geowissenschaften