Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine neue Stufe der magnetischen Sättigung

25.07.2017

Wissenschaftler entdecken stärkste jemals beobachtete Magnetfelder in massearmen Sternen

Ein internationales Team von Wissenschaftlern unter der Leitung der Universität Göttingen hat unerwartet starke Magnetfelder auf einigen schnell rotierenden M-Zwergen entdeckt. Lange Zeit nahm man an, dass der Dynamo in diesen Sternen bei einer maximalen Magnetfeldstärke von ungefähr vier Kilogauss (kG) saturiert, wenn die Rotation des Sterns eine bestimmte Rate überschreitet.


Roter M-Zwerg.

Foto: Universität Göttingen

Indem sie exakte Beobachtungen und die neuesten Modelle verwendeten, entdeckten die Forscher, dass einige voll konvektive M-Zwerge sogar viel stärkere Magnetfelder von bis zu sieben kG generieren. Sie zeigten, dass Sterne mit starken Magnetfeldern auch die einfachste dipol-dominierte Magnetfeldgeometrie aufweisen, während Sterne mit komplexerer Geometrie keine Felder stärker als ungefähr vier kG produzieren können.

Die Studie beweist erstmals, dass der Dynamo in voll konvektiven M-Zwergen Magnetfelder generiert, die sich nicht nur in der Geometrie großflächiger Komponenten unterscheiden, sondern auch in der magnetischen Gesamtenergie. Die Ergebnisse wurden in der Fachzeitschrift Nature Astronomy veröffentlicht.

M-Zwerge sind die zahlreichsten Sterne in unserer Galaxie mit Massen zwischen 0,5 und 0,1 Sonnenmassen. Viele zeigen Oberflächenaktivität ähnlich unserer Sonne und produzieren „flares“, hohe Röntgenflüsse und großflächige Magnetfelder. All diese Phänomene resultieren aus einen Dynamo, der durch Rotation und Konvektion im Inneren der Sterne angetrieben wird.

Die meisten Sterne mit konvektiven Hüllen folgen einer sogenannten Rotation-Aktivitäts-Relation, bei der verschiedene Aktivitätsindikatoren (wie zum Beispiel der Röntgenfluss) bei Sternen mit Rotationsperioden kürzer als einige Tage saturieren. Für Sterne, die langsamer rotieren, verringert sich die Aktivität allmählich.

Man nimmt an, dass durch die enge empirische Korrelation zwischen Röntgenfluss und magnetischem Fluss auch die stellaren Magnetfelder bei Werten um vier kG saturieren. „Stärkere Magnetfelder wurden niemals zuvor in massearmen Sternen beobachtet, was als Beweis für die Magnetfeldsättigung angesehen wurde“, berichtet Dr. Denis Shulyak vom Institut für Astrophysik der Universität Göttingen.

Unter Zuhilfenahme großer Datenmengen aus exakten Beobachtungen und verbesserten analytischen Methoden fanden Forscher das bisher stärkste Magnetfeld von ungefähr sieben kG im M-Zwerg WX UMa und Felder zwischen fünf und sechs KG in drei weiteren Sternen. All diese Werte liegen weit jenseits des bisher angenommenen Sättigungswerts von vier kG.

„WX UMa ist zehnmal kleiner als die Sonne, generiert aber ein durchschnittliches Magnetfeld, das um den Faktor hundert stärker ist“, sagt Prof. Dr. Ansgar Reiners vom Institut für Astrophysik der Universität Göttingen. „Das kommt daher, dass WX UMa ungefähr dreißigmal schneller rotiert als die Sonne und seine voll konvektive Hülle eine große Menge an kinetischer Energie liefert. Diese beiden Faktoren sind notwendig für einen effizienten Dynamo. Schnell rotierende M-Zwerge sind daher sehr aktiv, und nun wissen wir, dass einige von ihnen viel stärkere Magnetfelder produzieren als wir dachten“.

Die Forscher fanden außerdem eine Verbindung zwischen Stärke und Geometrie von Oberflächenmagnetfeldern. Sterne mit den stärksten Magnetfeldern haben einfache dipol-dominierte Felder, während Sterne mit komplexer multipol-dominierter Magnetfeldgeometrie keine Felder stärker als vier kG generieren. „Das allein ist ein sehr interessantes Ergebnis, weil es uns sagt, dass der Dynamo in voll konvektiven M-Zwergen Magnetfelder produziert, die sich nicht nur in der Geometrie ihrer großflächigen Komponenten – welche bereits aus früheren Studien bekannt ist – unterscheiden, sondern auch in ihrer magnetischen Gesamtenergie“, berichtet Shulyak.

„Zusätzlich beobachten wir, dass die Dynamo-Prozesse sich unterschiedlich in Bezug auf die Rotationsrate dieser Sterne verhalten. Sterne mit Multipol-Geometrie saturieren bei Perioden von weniger als vier Tagen mit einer gesättigten Magnetfeldstärke von ungefähr vier kG, während einige Sterne mit Dipol-Geometrie Oberflächenfelder aufweisen, die eindeutig stärker sind und keinen offensichtlichen Sättigungseffekt zeigen. Allerdings sind zusätzliche Beobachtungen notwendig und wir hoffen, diese Frage in zukünftigen Studien ansprechen zu können. Dennoch liefern unsere Ergebnisse bereits jetzt wichtige Beschränkungen und Herausforderungen für existierende Dynamo-Modelle.“

Originalveröffentlichung: Denis Shulyak et al. Strong dipole magnetic fields in fast rotating fully convective stars. Nature Astronomy 2017. DOI: 10.1038/s41550-017-0184.

Kontakt:
Dr. Denis Shulyak
Georg-August-Universität Göttingen
Fakultät für Physik – Institut für Astrophysik
Telefon (0551) 39-5055
E-Mail: denis@astro.physik.uni-goettingen.de

Prof. Dr. Ansgar Reiners
Georg-August-Universität Göttingen
Fakultät für Physik – Institut für Astrophysik
Telefon (0551) 39-13825
E-Mail: ansgar.reiners@physik.uni-goettingen.de

Weitere Informationen:

http://www.uni-goettingen.de/admin/presse/action.php?mode=change&id=5882 Fotos
http://www.astro.physik.uni-goettingen.de/~areiners/AR/AR.htm Arbeitsgruppe

Thomas Richter | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern
15.09.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik