Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Aufbruch in eine neue Dimension des Kohlenstoffs

05.04.2016

Reiner Kohlenstoff ist in vielen verschiedenen Formen zu finden, die bekanntesten sind Diamant und Graphit. Einzig Carbin, die eindimensionale Form des Kohlenstoffs, konnte noch nie hergestellt werden: Ein internationales Team von PhysikerInnen unter der Leitung von Thomas Pichler von der Universität Wien hat nun einen Meilenstein auf dem Weg zur Herstellung von Carbin in makroskopischen Mengen erreicht: Eine neuartige Methode machte es möglich, Ketten aus mehr als 6.000 Kohlenstoffatomen zu erzeugen – ein neuer Rekord.

Die hohe Bindungsfähigkeit des Kohlenstoffatoms ist nicht nur die Grundlage unzähliger chemischer Verbindungen, sie erlaubt es, selbst in Reinform viele sehr bekannte Strukturen herzustellen, allen voran Diamant und Graphit.


Schematische Darstellung linearer Kohlenstoffketten innerhalb der doppelwandigen Kohlenstoffnanoröhren.

Lei Shi, Fakultät für Physik der Universität Wien

Eine einzelne Schicht Graphit wiederum, besser bekannt als Graphen, kann in eine Kohlenstoffnanoröhre oder ein Fulleren gerollt bzw. gefaltet werden. Obwohl die Existenz von Carbin, einer quasi unendlich langen Kette aus Kohlenstoffatomen, schon im Jahr 1885 vom späteren Nobelpreisträger Adolf von Baeyer vorhergesagt wurde, war es bis heute nicht möglich, dieses Material zu erzeugen.

Von Baeyers Schlussfolgerungen implizierten sogar, dass die Synthese von Carbin aufgrund seiner extremen Reaktionsfreudigkeit ein schier unmögliches Unterfangen darstellt. Nichtsdestotrotz konnten im Verlauf der letzten 50 Jahre immer längere Kohlenstoffketten hergestellt werden, wobei der Rekord aus dem Jahr 2003 bei etwa 100 Atomen lag. Thomas Pichler und sein Team konnten diesen Rekord nun brechen.

Die ForscherInnen der Universität Wien erarbeiteten eine neue Methode, mit der sie in der Lage sind, Kohlenstoffketten mit einer noch nie dagewesenen Länge von bis zu 6.000 Kohlenstoffatomen herzustellen, welche sich damit im Bereich von Mikrometern bewegt.

Dafür benützten sie doppelwandige Kohlenstoffnanoröhren als Schutzschild und "Nano-Brutkasten", um innerhalb ihrer Hohlräume Kohlenstoffketten in makroskopischem Ausmaß wachsen zu lassen. In Zusammenarbeit mit den Forschungsgruppen von Kazu Suenaga am AIST Tsukuba in Japan, Lukas Novotny an der ETH Zürich in Schweiz und Angel Rubio am MPI Hamburg in Deutschland und am UPV/EHU San Sebastian in Spanien konnte die Existenz der Ketten mit mehreren raffinierten und komplementären Methoden nachgewiesen werden.

Sie verwendeten temperaturabhängige Nah- und Fernfeld-Ramanspektroskopie (für die Untersuchung elektronischer und schwingungstechnischer Eigenschaften), hochauflösende Transmissionselektronenmikroskopie (für die direkte Beobachtung von Carbin innerhalb der Kohlenstoffnanoröhren) sowie Röntgenstreuung (für den Nachweis makroskopischen Kettenwachstums).

"Der direkte experimentelle Nachweis linearer Kohlenstoffketten mit einer bisher als unmöglich zu realisierenden geglaubten Länge ist ein wichtiger Meilenstein auf dem Weg zum endgültigen Verständnis von Carbin, dem 'Heiligen Gral' der Allotrope des Kohlenstoffs", erklärt Lei Shi, Erstautor der Publikation, deren Ergebnisse in der neuen Ausgabe von "Nature Materials" erscheinen.

Mögliche Anwendungen

Carbin ist innerhalb der doppelwandigen Kohlenstoffnanoröhren außerordentlich stabil, was essentiell für mögliche Anwendungen ist. Theoretische Modelle sagen voraus, dass einerseits die mechanischen Eigenschaften von Carbin alle bisher bekannten Materialien übertreffen werden, sogar Graphen und Diamant. Andererseits liegt auch in den elektronischen Eigenschaften erhebliches Anwendungspotential, unter anderem für Quantenspintransport oder als magnetische Halbleiter.

Diese Arbeit wurde unterstützt vom FWF und der EU.

Publikation in "Nature Materials":
"Confined linear carbon chains as a route to bulk carbyne": Lei Shi, Philip Rohringer, Kazu Suenaga, Yoshiko Niimi,Jani Kotakoski, Jannik C. Meyer, Herwig Peterlik, Marius Wanko, Seymur Cahangirov, Angel Rubio, Zachary J. Lapin, Lukas Novotny, Paola Ayala, Thomas Pichler,
Nature Materials, 2016
http://dx.doi.org/10.1038/NMAT4617
http://arxiv.org/1507.04896

Wissenschaftlicher Kontakt
Univ.-Prof. Mag. Dr. Thomas Pichler
Elektronische Materialeigenschaften
Fakultät für Physik
Universität Wien
1090 Wien, Boltzmanngasse 5
M +43-664-60277-51466
thomas.pichler@univie.ac.at

Rückfragehinweise
Mag. Alexandra Frey
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 33
M +43-664-602 77-175 33
alexandra.frey@univie.ac.at

Offen für Neues. Seit 1365
Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 15 Fakultäten und vier Zentren arbeiten rund 9.700 MitarbeiterInnen, davon 6.800 WissenschafterInnen. Die Universität Wien ist damit auch die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 92.000 nationale und internationale Studierende inskribiert. Mit über 180 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. http://www.univie.ac.at

Stephan Brodicky | Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

nachricht NAWI Graz-Forschende vermessen Lichtfelder erstmals in 3D
26.06.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen

27.06.2017 | Biowissenschaften Chemie

Wave Trophy 2017: Doppelsieg für die beiden Teams von Phoenix Contact

27.06.2017 | Unternehmensmeldung

Warnsystem KATWARN startet international vernetzten Betrieb

27.06.2017 | Informationstechnologie