Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Aufbruch in eine neue Dimension des Kohlenstoffs

05.04.2016

Reiner Kohlenstoff ist in vielen verschiedenen Formen zu finden, die bekanntesten sind Diamant und Graphit. Einzig Carbin, die eindimensionale Form des Kohlenstoffs, konnte noch nie hergestellt werden: Ein internationales Team von PhysikerInnen unter der Leitung von Thomas Pichler von der Universität Wien hat nun einen Meilenstein auf dem Weg zur Herstellung von Carbin in makroskopischen Mengen erreicht: Eine neuartige Methode machte es möglich, Ketten aus mehr als 6.000 Kohlenstoffatomen zu erzeugen – ein neuer Rekord.

Die hohe Bindungsfähigkeit des Kohlenstoffatoms ist nicht nur die Grundlage unzähliger chemischer Verbindungen, sie erlaubt es, selbst in Reinform viele sehr bekannte Strukturen herzustellen, allen voran Diamant und Graphit.


Schematische Darstellung linearer Kohlenstoffketten innerhalb der doppelwandigen Kohlenstoffnanoröhren.

Lei Shi, Fakultät für Physik der Universität Wien

Eine einzelne Schicht Graphit wiederum, besser bekannt als Graphen, kann in eine Kohlenstoffnanoröhre oder ein Fulleren gerollt bzw. gefaltet werden. Obwohl die Existenz von Carbin, einer quasi unendlich langen Kette aus Kohlenstoffatomen, schon im Jahr 1885 vom späteren Nobelpreisträger Adolf von Baeyer vorhergesagt wurde, war es bis heute nicht möglich, dieses Material zu erzeugen.

Von Baeyers Schlussfolgerungen implizierten sogar, dass die Synthese von Carbin aufgrund seiner extremen Reaktionsfreudigkeit ein schier unmögliches Unterfangen darstellt. Nichtsdestotrotz konnten im Verlauf der letzten 50 Jahre immer längere Kohlenstoffketten hergestellt werden, wobei der Rekord aus dem Jahr 2003 bei etwa 100 Atomen lag. Thomas Pichler und sein Team konnten diesen Rekord nun brechen.

Die ForscherInnen der Universität Wien erarbeiteten eine neue Methode, mit der sie in der Lage sind, Kohlenstoffketten mit einer noch nie dagewesenen Länge von bis zu 6.000 Kohlenstoffatomen herzustellen, welche sich damit im Bereich von Mikrometern bewegt.

Dafür benützten sie doppelwandige Kohlenstoffnanoröhren als Schutzschild und "Nano-Brutkasten", um innerhalb ihrer Hohlräume Kohlenstoffketten in makroskopischem Ausmaß wachsen zu lassen. In Zusammenarbeit mit den Forschungsgruppen von Kazu Suenaga am AIST Tsukuba in Japan, Lukas Novotny an der ETH Zürich in Schweiz und Angel Rubio am MPI Hamburg in Deutschland und am UPV/EHU San Sebastian in Spanien konnte die Existenz der Ketten mit mehreren raffinierten und komplementären Methoden nachgewiesen werden.

Sie verwendeten temperaturabhängige Nah- und Fernfeld-Ramanspektroskopie (für die Untersuchung elektronischer und schwingungstechnischer Eigenschaften), hochauflösende Transmissionselektronenmikroskopie (für die direkte Beobachtung von Carbin innerhalb der Kohlenstoffnanoröhren) sowie Röntgenstreuung (für den Nachweis makroskopischen Kettenwachstums).

"Der direkte experimentelle Nachweis linearer Kohlenstoffketten mit einer bisher als unmöglich zu realisierenden geglaubten Länge ist ein wichtiger Meilenstein auf dem Weg zum endgültigen Verständnis von Carbin, dem 'Heiligen Gral' der Allotrope des Kohlenstoffs", erklärt Lei Shi, Erstautor der Publikation, deren Ergebnisse in der neuen Ausgabe von "Nature Materials" erscheinen.

Mögliche Anwendungen

Carbin ist innerhalb der doppelwandigen Kohlenstoffnanoröhren außerordentlich stabil, was essentiell für mögliche Anwendungen ist. Theoretische Modelle sagen voraus, dass einerseits die mechanischen Eigenschaften von Carbin alle bisher bekannten Materialien übertreffen werden, sogar Graphen und Diamant. Andererseits liegt auch in den elektronischen Eigenschaften erhebliches Anwendungspotential, unter anderem für Quantenspintransport oder als magnetische Halbleiter.

Diese Arbeit wurde unterstützt vom FWF und der EU.

Publikation in "Nature Materials":
"Confined linear carbon chains as a route to bulk carbyne": Lei Shi, Philip Rohringer, Kazu Suenaga, Yoshiko Niimi,Jani Kotakoski, Jannik C. Meyer, Herwig Peterlik, Marius Wanko, Seymur Cahangirov, Angel Rubio, Zachary J. Lapin, Lukas Novotny, Paola Ayala, Thomas Pichler,
Nature Materials, 2016
http://dx.doi.org/10.1038/NMAT4617
http://arxiv.org/1507.04896

Wissenschaftlicher Kontakt
Univ.-Prof. Mag. Dr. Thomas Pichler
Elektronische Materialeigenschaften
Fakultät für Physik
Universität Wien
1090 Wien, Boltzmanngasse 5
M +43-664-60277-51466
thomas.pichler@univie.ac.at

Rückfragehinweise
Mag. Alexandra Frey
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 33
M +43-664-602 77-175 33
alexandra.frey@univie.ac.at

Offen für Neues. Seit 1365
Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 15 Fakultäten und vier Zentren arbeiten rund 9.700 MitarbeiterInnen, davon 6.800 WissenschafterInnen. Die Universität Wien ist damit auch die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 92.000 nationale und internationale Studierende inskribiert. Mit über 180 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. http://www.univie.ac.at

Stephan Brodicky | Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Maschinelles Lernen im Quantenlabor
19.01.2018 | Universität Innsbruck

nachricht Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
17.01.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie