Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auch das Deuteron gibt Rätsel auf. Es ist – genau wie das Proton – kleiner als bisher gedacht

12.08.2016

Das Deuteron – einer der einfachsten Atomkerne, bestehend aus nur einem Proton und einem Neutron – ist deutlich kleiner als bislang gedacht. Zu diesem Ergebnis kommt eine internationale Forschungsgruppe, die Experimente am Paul Scherrer Institut PSI durchgeführt hat. Das neue Ergebnis passt zu einer Studie derselben Forschungsgruppe aus dem Jahr 2010, bei dem die Forschenden das Proton vermessen hatten und schon damals zu einem deutlich kleineren Wert kamen als andere Wissenschaftler mit anderen Experimentiermethoden vor ihnen. Das Ergebnis von 2010 begründete das seither sogenannte „Rätsel um den Protonradius“. Das neue Messergebnis der Deuterongröße gibt nun ein analoges Rätsel auf.

Womöglich wird dies zu einer Anpassung der Rydbergkonstante führen, einer fundamentalen Größe in der Physik. Eine weitere mögliche Erklärung ist, dass eine bislang unbekannte physikalische Kraft am Werk ist.


Teil der Laseranlage, die für das Experiment zur Bestimmung der Deuterongrösse benötigt wird. Hier werden unsichtbare infrarote Laserpulse in grünes Laserlicht umgewandelt. (Foto: Paul Scherrer Institut/A. Antognini und F. Reiser)

Für ihre Messungen hatten die Forschenden mittels Laserspektroskopie sogenanntes myonisches Deuterium vermessen: Ein künstliches Atom, bestehend aus einem Deuteron, das von einem exotischen Elementarteilchen namens Myon umkreist wird.

Die Experimente fanden am PSI statt, da die hier vorhandene, weltweit leistungsstärkste Myonenquelle benötigt wurde, um in ausreichenden Mengen myonisches Deuterium herzustellen. Ihre neue Studie zur Deuterongröße haben die Forschenden in der renommierten Fachzeitschrift Science veröffentlicht.

... mehr zu:
»Atom »Atome »Deuterium »ETH »Elektronen »Myon »Myonen »Myonenquelle »Neutron »PSI

Das Deuteron ist kleiner, als bisherige Messungen ergeben haben. Ein Deuteron ist ein sehr einfacher Atomkern, bestehend nur aus einem Proton und einem Neutron, also je einem der beiden Bausteine von Atomkernen. Eine internationale Kooperation von Forschenden hat am Paul Scherrer Institut PSI das Deuteron genauer vermessen als je zuvor. Der Radius des Deuterons, den sie erhielten, deckt sich jedoch nicht mit den Werten anderer Forschungsgruppen, sondern zeigt einen deutlich kleineren Wert.

Trotz dieses Widerspruchs gibt es auch eine Übereinstimmung: Bereits 2010 hatte die gleiche Forschungsgruppe am PSI von der Vermessung einzelner Protonen mit derselben Methode berichtet. Auch damals zeigte sich deutlich: Das Proton ist kleiner als bis dato angenommen. „Das Rätsel um den Protonradius“ nennt die Forschungsgemeinde seither diesen Umstand. Eine weitere Auswertung von Protonen-Daten aus dem PSI bestätigte im Jahr 2013 denselben kleinen Wert.

Nun also auch das Deuteron. „Dass aber unsere Methode, die Laserspektroskopie, fehlerhaft ist, glaubt inzwischen niemand mehr aus der Community“, stellt der PSI-Physiker Aldo Antognini klar. Und sein Forschungspartner Randolf Pohl, der inzwischen an der Universität Mainz forscht, ergänzt: „Nachdem 2010 unsere erste Studie herausgekommen war, fürchtete ich, dass sich ein altgedienter Physiker melden und uns auf einen groben Schnitzer hinweisen würde. Aber die Jahre sind vergangen und bis heute ist nichts dergleichen passiert.“

Und nun bestätigt auch die neue Studie – die Vermessung des Deuterons – das Rätsel um den Protonradius. „Man könnte sagen: Das Rätsel hat sich jetzt doppelt bestätigt“, so Pohl.

Neben den Wissenschaftlern am PSI waren maßgeblich Forschende der ETH Zürich, des MPI für Quantenoptik (Deutschland), Forschende in Paris (Frankreich), Coimbra (Portugal), Stuttgart (Deutschland), Freiburg (Schweiz) und Hsinchu (Taiwan) an der Studie beteiligt.

Neue Experimente angeregt

Das neue Forschungsergebnis ist mehr als eine Verdopplung des alten Rätsels um den Protonradius: Es kann darüber hinaus der Suche nach der Wahrheit dienen. „Natürlich kann es nicht sein, dass das Deuteron – genauso wenig wie das Proton – zwei verschiedene Größen hat“, stellt Antognini klar. Also sucht die Wissenschaftsgemeinde nach Erklärungen, die die unterschiedlichen Werte wieder miteinander in Einklang bringt.

Eine mögliche Erklärung ist, dass eine bislang unbekannte physikalische Kraft am Werk ist. Das ist für die Wissenschaftler ein aufregendes Szenario, es ist jedoch sehr unwahrscheinlich.

Die naheliegendere Erklärung ist eine experimentelle Ungenauigkeit. „Tatsächlich liesse sich das Rätsel sehr leicht lösen, wenn wir von einem minimalen experimentellen Problem bei der Wasserstoffspektroskopie ausgehen“, erklärt Antognini. Auf dieser Methode basiert ein Teil der früheren Messungen sowohl der Protongröße als auch der Deuterongröße.

Eine weitere Methode zur Bestimmung der Proton- und Deuterongröße nutzt Elektronenstreuung. Die Deuterongröße, die via Elektronenstreuung gemessen wurde, ist tatsächlich vereinbar mit dem neuen Wert der PSI-Forschungsgruppe, hat jedoch insgesamt eine vergleichsweise große Ungenauigkeit.

Um das Rätsel des Protonradius zu knacken, haben mehrere Forschungsgruppen, die Wasserstoffspektroskopie oder Elektronenstreuung betreiben, schon vor Jahren begonnen, ihre Experimente aufzurüsten und in der Genauigkeit zu verbessern. Darauf sind Antognini und Pohl stolz: „Hätte unser Wert mit den vorangegangenen übereingestimmt, hätte es zwar nicht dieses verflixte Rätsel um den Protonradius gegeben; aber es hätte auch niemals diese Welle gegeben, die mittlerweile weltweit zu mehreren hochgenauen Messaufbauten geführt hat“, sagt Pohl. Aktuell sind Forschungsgruppen in München, Paris und Toronto dabei, genauere Werte via Wasserstoffspektroskopie zu ermitteln. Deren Ergebnisse werden für die kommenden Jahre erwartet.

Womöglich muss physikalische Konstante angepasst werden

„Sollte sich tatsächlich herausstellen, dass die Wasserstoffspektroskopie einen falschen – also minimal verschobenen – Wert liefert, so würde das bedeuten, dass die Rydbergkonstante minimal geändert werden muss“, erklärt Antognini. Die Rydbergkonstante und der Protonradius sind zwei stark aneinander gekoppelte Größen. Auch ist die Rydbergkonstante unter allen physikalischen Konstanten diejenige, die bislang mit der höchsten Genauigkeit bestimmt wurde: Selbst ihre elfte Nachkommastelle ist schon bekannt. Dennoch könnte sich dank des Rätsels um den Protonradius an diesen letzten Stellen hinter dem Komma noch etwas ändern. Das hätte für viele Bereiche der Physik Konsequenzen und würde zu minimalen Korrekturen weiterer Naturkonstanten führen.

Weltweit leistungsstärkste Myonenquelle nötig

Am PSI bestimmten die Forschenden die Größe des Deuterons, indem sie zunächst künstliche Atome herstellten: myonisches Deuterium. Diese Atome haben als Kern ein Deuteron, das von einem Myon umkreist wird.

Die Myonenquelle des PSI ist die weltweit leistungsstärkste ihrer Art. Dank dieser war es möglich, rund 300 Myonen pro Sekunde in die Experimentierkammer zu schleusen. Dort trafen sie auf gasförmiges Deuterium, schleuderten dessen Elektronen heraus und nahmen deren Platz ein. Das Ergebnis waren Atome von myonischem Deuterium.

Myonen sind negativ geladene Elementarteilchen, sie ähneln Elektronen stark, sind jedoch rund 200 Mal schwerer als diese. Durch diese höhere Masse bewegen sich die Myonen viel näher am Atomkern und die Eigenschaften ihrer Bahnen hängen viel stärker von der Größe dieses Kerns ab.

Dies nutzten die Forschenden aus: Mit einem hochkomplexen gepulsten Lasersystem, das eigens für dieses Experiment entwickelt worden war, regten sie das Myon im künstlichen Atomverbund an. Die Wellenlänge des Lasers ließ sich stufenlos variieren. Bei der exakt richtigen Wellenlänge wurde das Myon von einem energetischen Zustand in einen anderen gehoben; von dort aus fiel es sofort wieder in einen niedrigeren Zustand, wobei es ein Lichtteilchen im Röntgenbereich aussandte. Diejenige eingestrahlte Wellenlänge, bei der ein Maximum an Röntgen-Lichtteilchen erzeugt wurde, markierte den energetischen Abstand der betreffenden Myonenbahnen um den Kern. Dieser energetische Abstand hängt stark mit dem Radius des Deuterons zusammen; die Forschenden konnten also anhand ihrer Messkurve die Größe des Deuterons bestimmen. Ganz analog hatten sie bei der Studie aus dem Jahr 2010 die Größe des Protons gemessen.

Hintergrund: Atome und Myonen

Jeder Gegenstand, jedes Lebewesen, jeder Planet und jeder Stern im Universum besteht aus Atomen. Das Zentrum eines jeden Atoms bildet sein Kern, bestehend aus Protonen und Neutronen, die von starken Kräften zusammengehalten werden. In vergleichsweise grosser Entfernung sausen die deutlich kleineren Elektronen um den Atomkern.

Das einfachste Atom ist dasjenige des Wasserstoffs: Es besteht aus nur einem Proton, das alleine und ganz ohne Neutron den Kern bildet, und einem Elektron. Mit einem zusätzlichen Neutron im Kern ergibt sich das Atom des Deuteriums; sein Kern, bestehend also aus einem Neutron und einem Proton, wird auch Deuteron genannt. Wieder etwas umfangreicher ist das Atom des Heliums, bestehend aus zwei Protonen, ein oder zwei Neutronen und um diesen Kern herum zwei Elektronen. Durch das gedankliche Hinzufügen von immer weiteren Kernteilchen und Elektronen entstehen der Reihe nach alle Elemente des Periodensystems.

Myonen sind ebenfalls Elementarteilchen, jedoch sind sie nicht Teil der üblichen Atome. Myonen sind sehr kurzlebig, das heißt, sie zerfallen schon einige millionstel Sekunden nach ihrer Entstehung in andere Teilchen. Experimente mit Myonen müssen entsprechend schnell ablaufen. An der weltweit leistungsstärksten Myonenquelle am PSI gibt es mehrere Messplätze, an denen solche Experimente durchgeführt werden.

Text: Paul Scherrer Institut/Laura Hennemann

Über das PSI
Das Paul Scherrer Institut PSI entwickelt, baut und betreibt große und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Energie und Umwelt sowie Mensch und Gesundheit. Die Ausbildung von jungen Menschen ist ein zentrales Anliegen des PSI. Deshalb sind etwa ein Viertel unserer Mitarbeitenden Postdoktorierende, Doktorierende oder Lernende. Insgesamt beschäftigt das PSI 2000 Mitarbeitende, das damit das größte Forschungsinstitut der Schweiz ist. Das Jahresbudget beträgt rund CHF 370 Mio. Das PSI ist Teil des ETH-Bereichs, dem auch die ETH Zürich und die ETH Lausanne angehören sowie die Forschungsinstitute Eawag, Empa und WSL.

Weiterführende Informationen
„Proton kleiner als gedacht“ – Text vom 8. Juli 2010 zur Vermessung des Protons am PSI - http://psi.ch/2MHn
„Weiter Rätsel um das Proton“ – Text vom 25. Januar 2013 zur Vermessung des Protons am PSI - http://psi.ch/Mhy8

Kontakt/Ansprechpartner
Dr. Aldo Antognini, Forschungsgruppe für Myonenphysik, Labor für Teilchenphysik, Paul Scherrer Institut, 5232 Villigen PSI
und Departement Physik, ETH Zürich, 8093 Zürich
Telefon: +41 56 310 46 14, E-Mail: aldo.antognini@psi.ch

Dr. Randolf Pohl, Max-Planck-Institut für Quantenoptik, 85748 Garching
und Johannes Gutenberg-Universität Mainz, 55099 Mainz
Telefon: +49 17 14 17 07 52, E-Mail: randolf.pohl@mpq.mpg.de

Originalveröffentlichung
Laser spectroscopy of muonic deuterium
R. Pohl, F. Nez, L.M.P. Fernandes, F.D. Amaro, F. Biraben, J.M.R. Cardoso, D.S. Covita, A. Dax, S. Dhawan, M.Diepold, A. Giesen, A.L. Gouvea, T. Graf, T.W. Hänsch, P. Indelicato, L. Julien, P. Knowles, F. Kottmann, E.-O. Le Bigot, Y.-W. Liu, J.A.M. Lopes, L. Ludhova, C.M.B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J.M.F. dos Santos, L.A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J.F.C.A. Veloso, A. Antognini
Science 12 August 2016: Vol. 353, no. 6300, page 669
DOI: 10.1126/science.aaf2468

Weitere Informationen:

http://www.uni-mainz.de/

http://psi.ch

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Atom Atome Deuterium ETH Elektronen Myon Myonen Myonenquelle Neutron PSI

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Die Sonne: Motor des Erdklimas
23.08.2017 | Generalverwaltung der Max-Planck-Gesellschaft, München

nachricht Entfesselte Magnetkraft
23.08.2017 | Generalverwaltung der Max-Planck-Gesellschaft, München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

Logistikmanagement-Konferenz 2017

23.08.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2017

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Spot auf die Maschinerie des Lebens

23.08.2017 | Biowissenschaften Chemie

Die Sonne: Motor des Erdklimas

23.08.2017 | Physik Astronomie

Entfesselte Magnetkraft

23.08.2017 | Physik Astronomie